# Mathematische Modellierung des Verlaufs der SARS-CoV-2-Pandemie in den deutschen Bundesländern

Christiane Dings<sup>1</sup>, Katharina Götz<sup>1</sup>, Katharina Och<sup>1</sup>, Iryna Sihinevich<sup>1</sup>, Quirin Werthner<sup>1</sup>, Lukas Kovar<sup>1</sup>, Fatima Marok<sup>1</sup>, Christina Schräpel<sup>1</sup>, Laura Fuhr<sup>1</sup>, Denise Türk<sup>1</sup>, Hannah Britz<sup>1</sup>, Prof. Dr. Sigrun Smola<sup>2</sup>, Prof. Dr. Thomas Volk<sup>3</sup>, Prof. Dr. Sascha Kreuer<sup>3</sup>, Dr. Jürgen Rissland<sup>2</sup>, Dr. Dominik Selzer<sup>1</sup>, Prof. Dr. Thorsten Lehr<sup>1</sup>

<sup>1</sup>Klinische Pharmazie, Universität des Saarlandes <sup>2</sup>Institut für Virologie, Universitätsklinikum des Saarlandes <sup>3</sup>Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes



Report vom 28. September 2022 Modellstand vom 28. September 2022 Datenstand vom 27. September 2022

#### Leitung:

Professor Dr. Thorsten Lehr Klinische Pharmazie, Universität des Saarlandes Campus C5 3, 66123 Saarbrücken thorsten.lehr@mx.uni-saarland.de www.clinicalpharmacy.me www.covid-simulator.com

# Zusammenfassung

Das aktuelle Modell beinhaltet die Alters- und Geschlechtsstruktur der Infizierten, Impfungen, Variants of Concern (Alpha, Delta und Omicron), Testanzahl und Positivenrate als Einflussfaktoren auf das Infektionsgeschehen und den Krankheitsverlauf. Simulationen enthalten auch den Einfluss von Saisonalität.

## Infektionsgeschehen

• Die 7-Tagesinzidenz in Deutschland steigt wieder. Deutschlandweit wird der R(t) Wert zum 28.09.2022 auf 1.3 abgeschätzt. Die R(t) Werte in den Bundesländern liegen zwischen 1.13 und 1.62.

Inhaltsverzeichnis Inhaltsverzeichnis

# Inhaltsverzeichnis

# Zusammenfassung

| 1        | Übe | ersicht der Modellierung                       | 1         |
|----------|-----|------------------------------------------------|-----------|
|          | 1.1 | Fragestellung                                  | 1         |
|          | 1.2 | Zielsetzung                                    | 1         |
|          | 1.3 | Zielgruppe                                     | 1         |
|          | 1.4 | Methoden                                       | 2         |
|          |     | 1.4.1 Datenquellen                             | 2         |
|          |     | 1.4.2 Modellentwicklung                        | 2         |
|          | 1.5 | Modellstruktur                                 | 4         |
|          |     | 1.5.1 Infektionsgeschehen                      | 4         |
|          |     | 1.5.2 Krankheitsverlauf                        | 9         |
|          | 1.6 | Modellergebnisse                               | 13        |
|          |     | 1.6.1 Infektionsgeschehen in den Bundesländern | 13        |
|          |     | 1.6.2 Krankheitsverlauf in den Bundesländern   | 18        |
| <b>2</b> | Bad | len-Württemberg                                | 22        |
|          | 2.1 | Infektionsgeschehen                            | 22        |
|          | 2.2 | Krankheitsverlauf                              | 24        |
| 3        | Bay | vern                                           | 27        |
|          | 3.1 | Infektionsgeschehen                            | 27        |
|          | 3.2 | Krankheitsverlauf                              | 29        |
| 4        | Ber | lin                                            | 32        |
|          | 4.1 | Infektionsgeschehen                            | 32        |
|          | 4.2 | Krankheitsverlauf                              | 34        |
| 5        | Bra | ndenburg                                       | <b>37</b> |
|          | 5.1 | Infektionsgeschehen                            | 37        |
|          | 5.2 | Krankheitsverlauf                              | 39        |

Inhaltsverzeichnis Inhaltsverzeichnis

| 6  | Bremen  |                     |    |  |  |
|----|---------|---------------------|----|--|--|
|    | 6.1     | Infektionsgeschehen | 42 |  |  |
|    | 6.2     | Krankheitsverlauf   | 44 |  |  |
| 7  | Hamburg |                     |    |  |  |
|    | 7.1     | Infektionsgeschehen | 47 |  |  |
|    | 7.2     | Krankheitsverlauf   | 49 |  |  |
| 8  | Hes     | sen                 | 52 |  |  |
|    | 8.1     | Infektionsgeschehen | 52 |  |  |
|    | 8.2     | Krankheitsverlauf   | 54 |  |  |
| 9  | Med     | klenburg-Vorpommern | 57 |  |  |
|    | 9.1     | Infektionsgeschehen | 57 |  |  |
|    | 9.2     | Krankheitsverlauf   | 59 |  |  |
| 10 | Nie     | dersachsen          | 62 |  |  |
|    | 10.1    | Infektionsgeschehen | 62 |  |  |
|    | 10.2    | Krankheitsverlauf   | 64 |  |  |
| 11 | Nor     | drhein-Westfalen    | 67 |  |  |
|    | 11.1    | Infektionsgeschehen | 67 |  |  |
|    | 11.2    | Krankheitsverlauf   | 69 |  |  |
| 12 | Rhe     | inland-Pfalz        | 72 |  |  |
|    | 12.1    | Infektionsgeschehen | 72 |  |  |
|    | 12.2    | Krankheitsverlauf   | 74 |  |  |
| 13 | Saaı    | rland               | 77 |  |  |
|    | 13.1    | Infektionsgeschehen | 77 |  |  |
|    | 13.2    | Krankheitsverlauf   | 79 |  |  |
| 14 | Sack    | nsen 8              | 82 |  |  |
|    | 14.1    | Infektionsgeschehen | 82 |  |  |
|    | 14 2    | Krankheitsverlauf   | 84 |  |  |

Inhaltsverzeichnis Inhaltsverzeichnis

| <b>15</b> | Sack | nsen-Anhalt         | 87  |
|-----------|------|---------------------|-----|
|           | 15.1 | Infektionsgeschehen | 87  |
|           | 15.2 | Krankheitsverlauf   | 89  |
| 16        | Schl | eswig-Holstein      | 92  |
|           | 16.1 | Infektionsgeschehen | 92  |
|           | 16.2 | Krankheitsverlauf   | 94  |
| 17        | Thü  | ringen              | 97  |
|           | 17.1 | Infektionsgeschehen | 97  |
|           | 17.2 | Krankheitsverlauf   | 99  |
| 18        | Deu  | tschland 1          | .02 |
|           | 18.1 | Infektionsgeschehen | 102 |
|           | 18.2 | Krankheitsverlauf   | 104 |

# 1 Übersicht der Modellierung

## 1.1 Fragestellung

Die Infektionen von Menschen mit dem SARS-Coronavirus-2 (die resultierende Krankheit wird als "COVID-19" bezeichnet) spielen in Deutschland und der Welt weiterhin eine große Rolle. Aus steigenden Infektionszahlen resultieren steigende Hospitalisierungsraten, eine vermehrte Belegung von Intensivbetten, sowie die Beanspruchung von Beatmungskapazitäten. Im Verlauf der Pandemie wurden verschiedene Nicht-Pharmazeutische Interventionen (NPI) eingeführt (z.B. Schulschließungen, Bundesnotbremse), um die Ausbreitung zu verzögern und die Belastungsgrenzen des Gesundheitssystems nicht zu übersteigen. Durch die Fülle an Faktoren, die den individuellen Krankheitsverlauf bestimmen und so die Auslastung des Gesundheitssystems beeinflussen, erweist sich die Beschreibung des Einflusses von NPIs auf das lokale Infektionsgeschehen als komplex, ist aber über mathematische Modellierung und Simulation zu erreichen.

## 1.2 Zielsetzung

Ziel dieses Projektes ist die Entwicklung eines mechanistischen, mathematischen Modells zur Beschreibung der COVID-19 Infektionen inkl. Krankenhausbettenbelegung, intensivmedizinischer Behandlung, Beatmung und Sterbefällen in den einzelnen Bundesländern und Stadt- und Landkreisen und die Abschätzung des Einflusses von Nicht-Pharmazeutischen Interventionen (z.B. Schulschließung) über die Zeit.

Das Modell kann verwendet werden, um den weiteren Verlauf des Infektionsgeschehens (inkl. Krankenhausbelegung, ICU, Beatmung, Sterbefälle) unter verschiedenen möglichen Szenarien anzunähern.

Das Modell wird wöchentlich mit neuen Daten angepasst und die Ergebnisse für alle Bundesländer als PDF-Bericht zur Verfügung gestellt. Die Webseite www.covid-simulator. com dient als Online-Plattform für die Informationsübermittlung und die Bereitstellung eines Online-Simulators.

# 1.3 Zielgruppe

Das Modell kann Behörden, Politikern und dem Gesundheitswesen helfen, den Verlauf der aktuellen SARS-Coronavirus-2 Pandemie kurz- und mittelfristig besser abzuschätzen und die Kapazitäten zu planen. Weiterhin können von diesen Personenkreisen der Einfluss von NPIs (z.B. Ausgangssperre) abgeschätzt werden und diese damit entweder rechtfertigen oder auch deren Aufhebung begründen.

Zum anderen kann das vorgestellte Modell verwendet werden, um der Bevölkerung zu veranschaulichen, welchen Einfluss die Interventionen auf den Infektionsverlauf haben und sie dadurch in den Maßnahmen bestärken.

#### 1.4 Methoden

Ein genehmigter Ethikantrag der Ethik-Kommission der Ärztekammer des Saarlandes liegt vor. Der NONMEM-Code, Differentialgleichungen und Parameter Schätzwerte zu dem aktuellen Modell sind auf www.github.com/Clinical-Pharmacy-Saarland-University/cosim zu finden.

#### 1.4.1 Datenquellen

Folgende Datenquellen dienen als Grundlage:

- Datenbank des Robert-Koch-Instituts (RKI):
  - Alters- und Geschlechtsverteilung der Neuinfektionen
  - Anzahl der Neuinfektionen auf Landkreisebene
  - Anteil der Virusmutationen an den Neuinfektionen
  - Anzahl wöchentlicher PCR-Tests und Positivenanteil
  - Impfungen
- Datenbank Berliner Morgenpost:
  - Fallzahlen, Tote und Genesene Patienten
- MetaKIS: Dokumentation von anonymisierten Abrechnungsdaten aus über 250 Kliniken deutschlandweit:
  - Informationen über den typischen Krankenhausaufenthalt von COVID-19-Patienten
- Informationen der Gesundheitsministerien:
  - Belegung von Krankenhausbetten
- Ergebnisse von Literatursuche über Interventionsmaßnahmen in den Bundesländern
- DIVI Intensivregister:
  - Belegung von Intensiv- und Beatmungsbetten

#### 1.4.2 Modellentwicklung

Die Modellierung erfolgt mittels des Non-Linear Mixed Effects (NLME) Ansatzes und wird in der Software NONMEM® (Version 7.4.3) durchgeführt und mittels gewöhnlicher Differentialgleichungen (ODEs) modelliert. Dabei wird das Modell basierend auf den Daten der Bundesländer entwickelt und anschließend auf Gesamtdeutschland und die Landund Stadtkreise angewendet.

Zunächst werden die Fallzahlen mithilfe eines klassischen SEIR-Modells beschrieben. Dafür wird angenommen, dass das Infektionsgeschehen primär dadurch verändert wird, dass durch Maßnahmen zur Kontaktvermeidung (NPIs) oder anderer Ereignisse, z.B.

Feiertage, die Höhe der Basisreproduktionsrate (R0) beeinflusst wird. Die Reproduktionsrate R(t) kann anschließend aus der Basisreproduktionsrate und der Anzahl der Susceptibles (S), also der Individuen, die infiziert werden können, abgeleitet werden durch R(t) = R0\*S/Einwohner. Diese Rate ändert sich über die Zeit, da die Anzahl der Susceptibles durch Infektionen und Impfungen abnimmt. Die Basisreproduktionsrate wird als konstant angenommen über die Zeiträume, in denen die NPIs unverändert sind und ändert sich sprunghaft an sogenannten Changepoints. Die Lage der Changepoints wurden zum Teil fixiert auf Zeitpunkte, zu denen bundesweit Maßnahmen zur Kontaktreduktion ergriffen wurden. Allerdings mussten zusätzliche Changepoints abgeschätzt werden, als ersichtlich wurde, dass privat ergriffene Maßnahmen der Bevölkerung aufgrund eines veränderten Risikobewusstseins das Infektionsgeschehen maßgeblich beeinflussen. Für jeden Zeitraum werden basierend auf den beobachteten Fallzahlen bundesland- und landkreisspezifische Basisreproduktionsraten abgeschätzt.

Auf Basis des Modells, das die Fallzahlen beschreibt, wurde das Modell zur Beschreibung von Krankenhausbelegung und Todesfällen entwickelt. Dazu wurden die im ersten Schritt abgeschätzten Reproduktionsraten fixiert. Im Modell sind daher verschiedene Raten alters- und geschlechtsabhängig implementiert. Hierfür wurden die Daten von über 45000 anonymisierten deutschen COVID-19 Patienten aus mehr als 250 Krankenhäusern im Krankenhausmanagementsystem MetaKIS analysiert und entspricht in etwa 10% aller in Deutschland hospitalisierten COVID-19 Patienten. Zudem wurden mit Hilfe von NONMEM® verschiedene Variablen getestet, die den Anteil der Patienten mit schweren Krankheitsverläufen beeinflussen könnten. Dazu gehören Impfungen gegen SARS-CoV-2, Virusmutationen, Anzahl wöchentlicher PCR-Tests und Testpositivenanteil. Auch die Sterberate von ambulant behandelten COVID-19-Patienten wurde mit Hilfe von NONMEM® abgeschätzt, da es hierfür keine Datengrundlage gab.

Statistische Analyse, graphische Darstellung und Reporterstellung wurden mit R<sup>®</sup> (Version 3.6.3) und R-Studio<sup>®</sup> (Version 1.2.5033) durchgeführt.

#### 1.5 Modellstruktur

Dem entwickelten Modell liegt ein klassisches SEIR Modell zugrunde, welches in der mathematischen Epidemiologie die Ausbreitung von Infektionen innerhalb einer Population beschreibt. In diesem klassischen Modell kann ein Individuum vier krankheitsrelevante Stadien durchlaufen: Stadium S: Menschen, die infiziert werden können, Stadium E: Menschen, die infiziert sind, infektiös sein können, aber noch nicht als Infizierte identifiziert sind, Stadium I: Infizierte Menschen, Stadium R: Geheilte Menschen. Das weiterentwickelte SEIR/D Modell differenziert das Stadium I (infizierte Menschen) in Stadium A: Infizierte, die ambulant verbleiben, Stadium KH: Infizierte im Krankenhaus, Stadium ICU: Infiziert auf Intensivstation sowie Stadium ICU beatmet: Beatmungspflichtige Infizierte. Drüber hinaus wurde das Modell um das Stadium D: Todesfälle durch COVID-19, erweitert. In Abb.1 ist die Modellstruktur schematisch abgebildet. Grau hinterlegt sind die Einflussfaktoren der jeweiligen Raten, die in den folgenden Kapiteln näher erläutert werden.

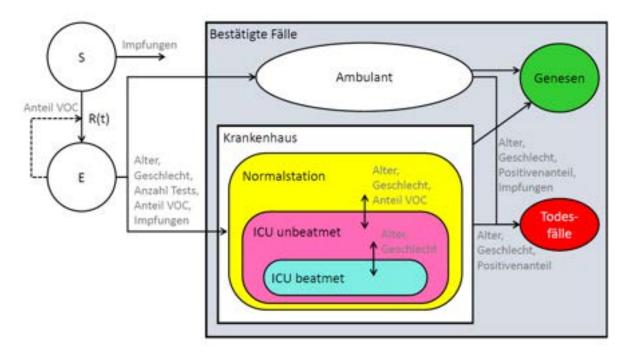



Abbildung 1: Modellstruktur und Einflussfaktoren (grauer Text) auf die verschiedenen Raten

#### 1.5.1 Infektionsgeschehen

Menschen aus dem  $Stadium\ E$  infizieren Menschen aus dem  $Stadium\ S$ . Der Faktor R(t) (Reproduktionsrate) gibt hierbei an, wie viele Menschen aus dem  $Stadium\ S$  durchschnittlich durch einen Infizierten aus dem  $Stadium\ E$  angesteckt werden. Menschen im  $Stadium\ E$  werden erst nach einer gewissen Zeit als Infizierte identifiziert und erreichen damit das  $Stadium\ C$  (Cases = bestätigte Fälle). Die Reproduktionsrate ist abhängig von NPIs wie

Kontakt- und Reisebeschränkungen oder Schulschließungen. Der Einfluss der NPIs wird mit Hilfe des NLME Ansatzes regelmäßig für die aktuelle Lage abgeschätzt.

Seit Ende des Jahres 2020 sind weltweit verschiedene Virusmutationen aufgetreten. Das RKI veröffentlicht seit Februar 2021 regelmäßige Berichte zum Anteil verschiedener besorgniserregender Varianten (Variants of Concern, VOC) an den Neuinfektionen in Deutschland. Danach sind hier vor allem die VOCs B.1.1.7 (Alpha) und B.1.617.2 (Delta) vertreten (Abb. 3). Beide Varianten zeigen eine erhöhte Infektiosität und setzen sich daher zunehmend gegenüber dem Wildtyp und den anderen Varianten durch. Daher wurde sie im Modell berücksichtigt. Die VOC Alpha wurde mit einem um 35% erhöhten R(t) Wert gegenüber Wildtyp implementiert (nach Graham et al. 2021). Die VOC Delta wurde mit einem um 97% erhöhten R(t) Wert implementiert (Campell et al. 2021). Die VOC Omicron wurde mit einem um 219% erhöhten R(t) Wert gegenüber Wildtyp implementiert. Der Anteil an VOC an den Neuinfektionen wurde in das Modell mit Hilfe einer exponentiellen Wachstumsfunktion nach Volz et al. implementiert. Die Steigung der Wachstumsfunktion wurde je VOC basierend auf den beobachteten Daten aus Großbritannien (Alpha und Delta) und Schottland und Dänemark (Omicron) gefittet, da die VOCs dort auftraten, bevor sie sich in Deutschland etablierten. Diese Funktion wurde an den beobachteten Anteil von 22.8% VOC Alpha im Februar und 15.1% VOC Delta im Juni gefittet. Die VOC Omicron hat sich in den Bundesländern zu verschiedenen Zeitpunkten ausgebreitet und wird daher wie in Abbildung 4 dargestellt im Modell berücksichtigt. Die Sublinie BA.2 wurde mit einem um 20% erhöhten R(t) Wert gegenüber den anderen Omicron Sublinien implementiert. Die Sublinie BA.5 wurde mit einem um 77% erhöhten R(t) Wert gegenüber BA.2 implementiert. Neben der Infektosität haben die verschiedenen VOCs einen Einfluss auf Hospitalisierungs-, ICU-, Beatmungs- und Sterberate wie in Tabelle 1 und Abbildung 2 dargestellt.

Tabelle 1: Anderung der Raten durch die Variants of Concern Alpha, Delta, Omicron und Sublinien relativ zur Rate der zuvor dominanten VOC

| VOC     | Tag der  | Infektiosität KH- Rate |        | ICU-  | Beatmungs- | Sterbe- |
|---------|----------|------------------------|--------|-------|------------|---------|
|         | Dominanz |                        |        | Rate  | rate       | rate    |
| Alpha   | 01.03.21 | +35%                   | +12.4% | +47%  | 0%         | 0%      |
| Delta   | 23.06.21 | +46%                   | +13.2% | +5%   | 0%         | 0%      |
| Omicron | 01.01.22 | +62%                   | -59%   | -49%  | 0%         | -58%    |
| BA.2    | 01.03.22 | +50%                   | -31.3% | 0%    | 0%         | 0%      |
| BA.4/5  | 07.06.22 | +77%                   | +24.1% | +33.5 | -29.6%     | 0%      |

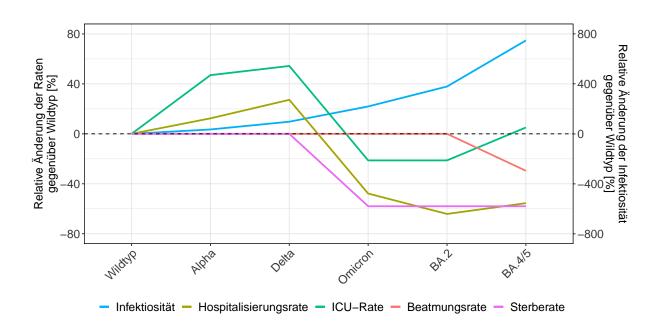



Abbildung 2: Änderungen von Infektiosität und Raten durch die Variants of Concern Alpha, Delta, Omicron und Sublinien

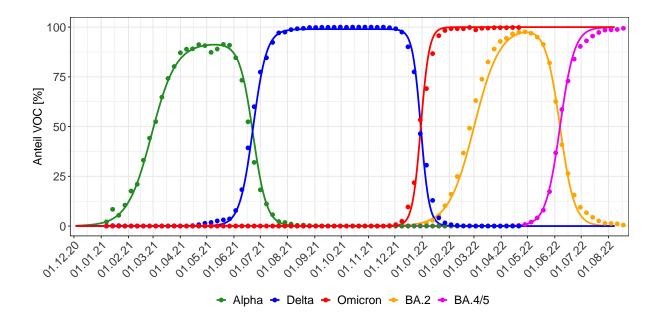



Abbildung 3: Anteile Variants of Concern Alpha, Delta, Omicron und Sublinien in Deutschland. Punkte stellen die Daten aus der Gesamtgenomsequenzierung dar. Die gestrichelte Linie markiert den heutigen Tag.

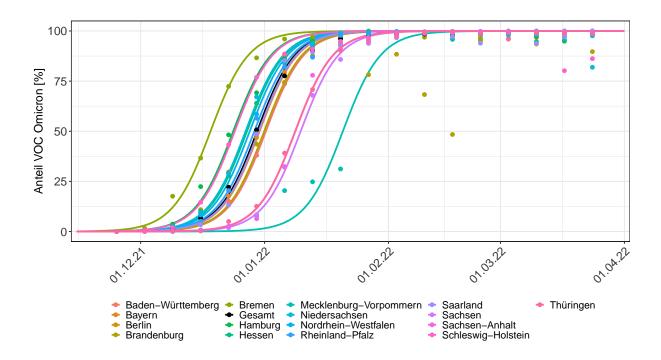



Abbildung 4: Anteile VOC Omicron in Deutschland und den Bundesländern. Punkte stellen die Daten aus der Gesamtgenomsequenzierung dar.

Seit 27.12.2020 wird in Deutschland gegen SARS-CoV-2 geimpft. Laut neusten Studien aus Israel mit dem Impfstoff BNT1626b2 ist das relative Risiko für eine SARS-CoV-2 Infektion nach der zweiten Impfdosis um 92% verringert (Dagan et al. 2021). Dieser Effekt wurde auf die Verbreitung von SARS-CoV-2 implementiert, indem der entsprechende Anteil an geimpften Personen je Bundesland (Abb. 5, Zweitimpfungen) von der Anzahl der Menschen, die infiziert werden können (Stadium S, Abb.1), abgezogen wird. Abb. 5 zeigt den Anteil an geimpften Personen im Zeitverlauf für Deutschland.

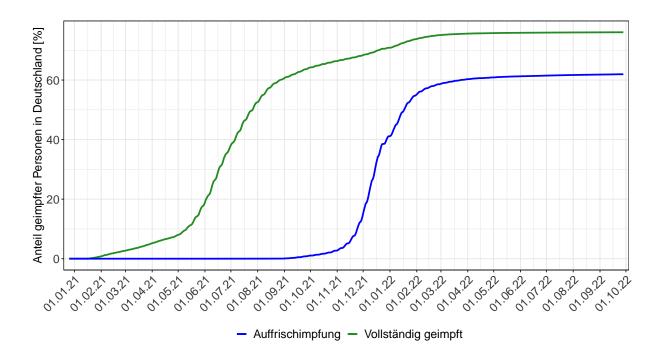



Abbildung 5: Anteil bisheriger vollständig geimpfter Personen (grüne Linie) und Personen mit Auffrischimpfung (blaue Linie) in Deutschland

Mittlerweile wurde mehrfach festgestellt, dass die Infektiosität von SARS-CoV-2 im Laufe des Jahres schwankt. Diese Schwankungen werden ausgelöst durch verschiedene Faktoren, wie z.B. Temperatur und Luftfeuchtigkeit, welche die Aerosolausbreitung beeinflussen wie auch das Verhalten der Bevölkerung (vermehrte Treffen in geschlossenen Räumen im Winter). Um die jahreszeitlichen Schwankungen zu berücksichtigen, wird der zukünftige R(t) Wert für die Simulationen täglich mit Hilfe der von Gavenčiak et al. berichteten Sinusfunktion angepasst. Die höchste Infektiosität liegt dabei am 1. Januar und die niedrigste Infektiosität am 1. Juli. Das Ausmaß der Schwankungen wurde von Gavenčiak et al. im Mittel auf  $\pm 26.7\%$  abgeschätzt und kann im Simulator variiert werden. In Abb. 6 werden die von unserem Modell abgeschätzten R(t) Werte und die Sinuskurve mit der mittleren Amplitude von 26.7% gezeigt.

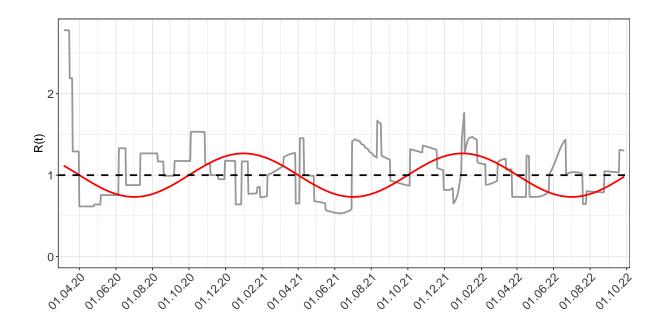



Abbildung 6: Saisonalitätseffekt auf die Infektiosität von SARS-CoV-2 im Laufe des Jahres (rote Linie) und die von dem Modell abgeschätzten R(t) Werte (graue Linie)

#### 1.5.2 Krankheitsverlauf

Infizierte Personen (C) können entweder ambulant genesen (R), versterben (D) oder im Verlauf der Erkrankung stationär aufgenommen werden (KH). Stationär behandelte Menschen werden je nach Schwere des Krankheitsverlaufs in drei Gruppen eingeteilt: Patienten die ausschließlich auf Normalstation behandelt werden, Patienten mit Behandlung auf Intensivstation und beatmete Patienten. Die Schwere des Krankheitsverlaufs bei SARS-CoV-2 Infektion ist abhängig vom Alter und Geschlecht der Patienten. Im Modell sind daher verschiedene Raten alters- und geschlechtsabhängig implementiert. Hierfür wurden die Daten von über 45000 anonymisieren deutschen COVID-19 Patienten aus mehr als 250 Krankenhäusern im Krankenhausmanagementsystem MetaKIS analysiert. Hospitalisierungsrate, Anteil der Patienten mit Behandlung auf Intensivstation, Anteil der beatmeten Patienten und die Sterberaten in den jeweiligen Gruppen wurden nach Altersgruppe und Geschlecht der Patienten stratifiziert berechnet. Dazu wurden die Altersgruppen verwendet, nach denen das RKI die Anzahl an Neuinfektionen berichtet (0-4, 5-14, 15-34, 35-59, 60-79 und >80). Die resultierenden alters- und geschlechtsabhängigen Raten werden in Abb. 7 gezeigt.

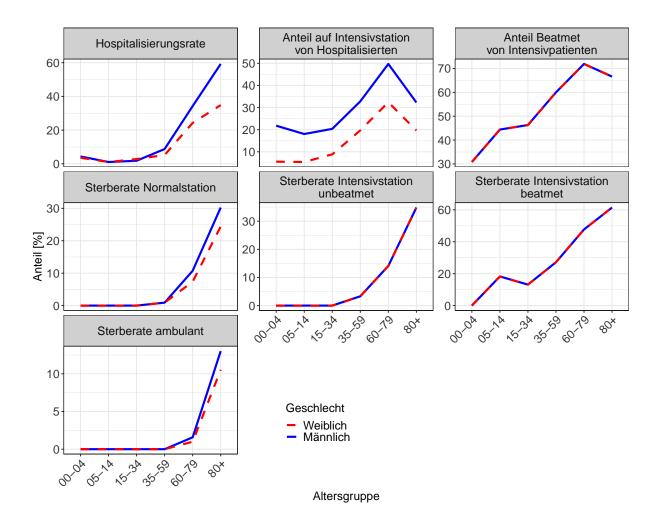



Abbildung 7: Alters- und geschlechtsabhängigen Raten

Für die verschiedenen Krankheitsverläufe wurde zudem die durchschnittliche Dauer des Krankenhausaufenthaltes und die Aufenthaltsdauer auf den verschiedenen Stationen berechnet (Tabelle 2).

Tabelle 2: Durchschnittliche Liegedauern auf den verschiedenen Stationen

|               |            | Liegedauer<br>[Tage] | ICU [%<br>Aufenthalt] | Beatmung [%<br>Aufenthalt] |
|---------------|------------|----------------------|-----------------------|----------------------------|
| Normalstation | Entlassen  | 11.5                 | -                     | -                          |
|               | Verstorben | 10.6                 | -                     | -                          |
| ICU           | Entlassen  | 20.4                 | 29                    | -                          |
| unbeatmet     | Verstorben | 20.0                 | 44                    | -                          |
| ICU beatmet   | Entlassen  | 28.6                 | 43                    | 28                         |
|               | Verstorben | 15.5                 | 68                    | 63                         |

Im Vereinigten Königreichen und in Dänemark, wo sich die VOC B.1.1.7 früher als in Deutschland ausgebreitet hat, wurde beobachtet, dass sie mit einem erhöhten Hospitalisierungs- und Sterberisiko eingeht (Challen et al. 2021, Bager et al. 2021). Der Einfluss der VOC Alpha und VOC Delta auf die Schwere des Krankheitsverlaufes in Deutschland wurde mit Hilfe des Modelles abgeschätzt. Dabei ergab sich für die Alpha Variante eine erhöhte Hospitalisierungsrate um 12.4% und ein erhöhter Anteil an Intensivpatienten um 47.4%. Die Hospitalisierungsrate von Patienten, die mit der VOC Delta infiziert sind, wird im Modell auf 47.9% erhöht gegenüber dem Wildtyp fixiert. Als Folge der höheren Sterberaten im Krankenhaus im Vergleich zu ambulant behandelten Patienten erhöht sich mit erhöhter Hospitalisierungsrate auch die Sterberate. Für Patienten, die mit der VOC Omicron infiziert sind, wird im Modell die Hospitalisierungsrate gegenüber Delta um 58.9% verringert, die Sterberate um 57.7% verringert, die ICU Belegung um 49.3% verringert, der Anteil der Beatmeten Patienten um 30.2% verringert und die Aufenthaltsdauer auf ICU um 30.9% verringert.Für Patienten, die mit den VOCs Omicron BA2, BA4 oder BA5 infiziert sind wird im Modell die Hospitalisierungsrate gegenüber Omicron BA1 um 31.3% verringert. Für Patienten, die mit den VOCs Omicron BA4 oder BA5 infiziert sind wird im Modell die Hospitalisierungsrate gegenüber Omicron BA1 um 24.1% erhöht, die ICU Belegung um 33.5% erhöht und der Anteil an Patienten, die beatmet werden müssen um 29.6% verringert. Der Anteil der hospitalisierten Patienten sinkt außerdem mit zunehmender Impfrate. Für vollständig geimpfte Patienten reduziert sich das Risiko hospitalisiert zu werden um 87% im Vergleich zu den ungeimpften Patienten (Dagan et al. 2021). Die Hospitalisierungsrate im Modell wird entsprechend dem erwarteten Anteil an geimpften Personen unter den Erkrankten reduziert.

Es hat sich gezeigt, dass die aus den oben beschriebenen Einflüssen resultierenden Raten die Krankenhausbelegung und Sterbefälle nicht ausreichend gut beschreiben. Einige SARS-CoV-2-Infektionen verlaufen ohne spezifische Symptome und werden daher nur bei intensiver, flächendeckender Testung entdeckt. Dementsprechend ist der Anteil an schweren Verläufen abhängig von der Teststrategie. Im Laufe der Zeit hat ist in Deutschland sowohl eine Veränderung an wöchentlich durchgeführten PCR-Test als auch des Positivenanteils zu beobachten (Abb. 8). Daher ist die Hospitalisierungsrate im Modell umgekehrt proportional abhängig von der Anzahl an durchgeführten PCR-Tests. Außerdem wurde ein Effekt des Positivenanteils der Tests auf die Sterberate von ambulanten Patienten und Patienten auf Normalstation identifiziert. Je höher der Anteil an positiven Tests, desto weniger milde Verläufe werden entdeckt und entsprechend höher ist die Fallsterblichkeit.

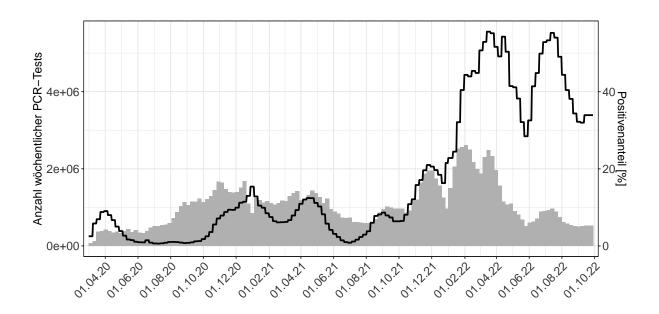



Abbildung 8: Anzahl wöchentlicher PCR-Tests (Balken) und Positivenanteil (Linie) in Deutschland

Neben den erklärbaren Effekten wurden verschiedene Ratenänderungen gefunden, die sich nicht durch direkt messbare Covariaten erklären lassen. Im Juni 2020 ist die Behandlungsdauer von beatmeten Patienten signifikant gesunken. Ein Grund dafür könnte sein, dass das Wissen und die Erfahrung um die optimale Behandlung von COVID-19 Patienten im Laufe der ersten Welle stark zugenommen hat. So wurden am 16. Juni die ersten Studienergebnisse veröffentlicht, die den Vorteil von Dexamethason bei Behandlung schwerer Verläufe belegen. Anfang Oktober sinkt zudem die Hospitalisierungsrate, während der Anteil der hospitalisierten Patienten, der Intensivbehandlung benötigt, ansteigt. Im Januar und Februar 2021 war ein Anstieg der Sterberate von ambulanten Patienten zu beobachten.

## 1.6 Modellergebnisse

#### 1.6.1 Infektionsgeschehen in den Bundesländern

Abb. 9 zeigt die aktuellen R(t)-Modellschätzwerte für die Bundesländer und Gesamtdeuschland.

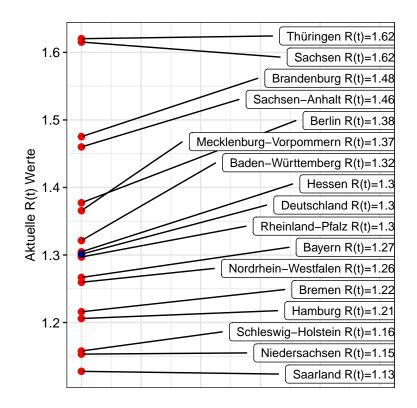



Abbildung 9: Aktuelle R(t) Modellschätzwerte für die Bundesländer und Gesamtdeutschland

Abb. 10 (im oberen Bildbereich) zeigt die Entwicklung der R0-Werte durch verschiedene nicht-pharmazeutischen Interventionen (NPIs) über die Zeit unter der Annahme einer virusnaiven Bevölkerung. Ab dem 03.12.2020 verändert sich der R0-Wert zusätzlich durch den Einfluss der VOC B.1.1.7. Da im Laufe der Pandemie Teile der Bevölkerung durch überstandene Infektion oder Impfung immun geworden sind, wird in Abb. 10 (im unteren Bildbereich) im Vergleich der aktuelle R(t) Wert abgebildet. Dieser berechnet sich aus dem R0 Wert und wird korrigiert für den Anteil der Bevölkerung, der noch nicht immun ist. Er spiegelt wider, wie viele Personen ein Infizierter im Schnitt ansteckt. Da die R-Werte auf Basis der gemeldeten Fallzahlen abgeschätzt werden und es an Weihnachten und Ostern zu Meldeverzügen kam kommt es hier zu einem starken Abfall mit anschließendem starkem Anstieg der R-Werte. In diesen Zeiträumen bilden die R-Werte daher weniger das tatsächliche Infektionsgeschehen bedingt durch NPIs ab, sondern vielmehr die Verzögerung in den Meldungen.




Abbildung 10: Entwicklung der Reproduktionszahlen über die Zeit

Das Robert Koch-Institut (RKI) veröffentlicht regelmäßige Updates zu der aktuellen Reproduktionszahl (R) in Deutschland. Die hier präsentierte Methode zur Abschätzung des R(t) und die Methode des RKI zur Berechnung des R-Wertes unterscheiden sich erheblich: Das RKI betrachtet ausschließlich die Neuinfektionen der letzten 7 Tage, somit reagiert R-Wert sensibel auf Veränderungen im Berichtswesen als auch im Bereich von kleinen Neuinfektionszahlen und fluktuiert stärker, während unser Modellansatz den kompletten Datensatz (Infektionen seit Beginn der Pandemie, sowie andere Daten, wie Krankenhausaufenthalte, Verstorbene, Genesene) berücksichtigt. Dennoch sieht man eine große Übereinstimmung zwischen den R(t) Modellschätzwerten für Gesamtdeutschland des hier präsentierten Modells (rote Linie = Gesamtdeutschland, graue Linien = Bundesländer) und den vom RKI berichteten Punktschätzer des 7-Tage-R-Werts (schwarze Linie) über die Zeit (Abb. 11).

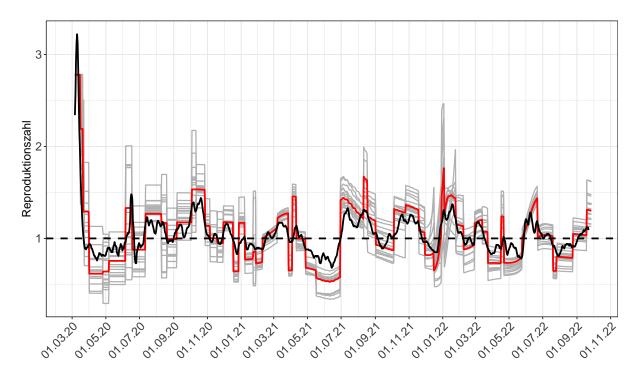



Abbildung 11: Vergleich von R(t) Modellschätzwerten (rote Linie: Gesamtdeutschland, graue Linien: Bundesländer) und R-Werten berichtet von RKI (schwarze Linie: Punktschätzer des 7-Tage-R-Werts über die Zeit.

Abbildungen 12 bis 14 zeigen die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für die einzelnen Bundesländer (Abb. 12) und für Deutschland (Abb. 13 und 14) basierend auf den abgeschätzten R(t)-Werten.

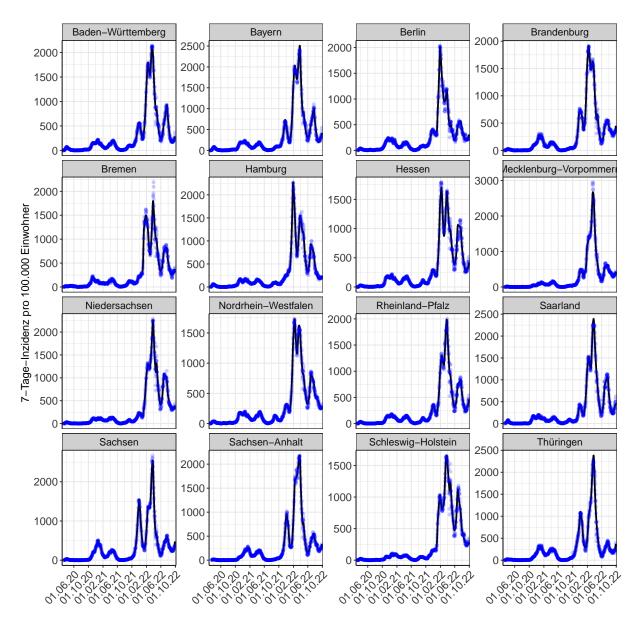



Abbildung 12: Deutschland nach Bundesländern - 7-Tage-Inzidenz pro 100.000 Einwohner Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

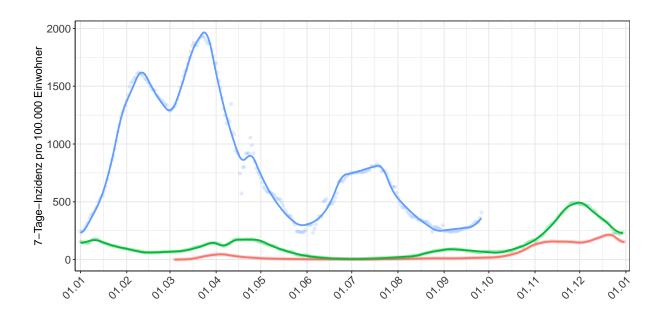



Abbildung 13: 7-Tage-Inzidenz pro 100.000 Einwohner in Deutschland nach Jahr. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

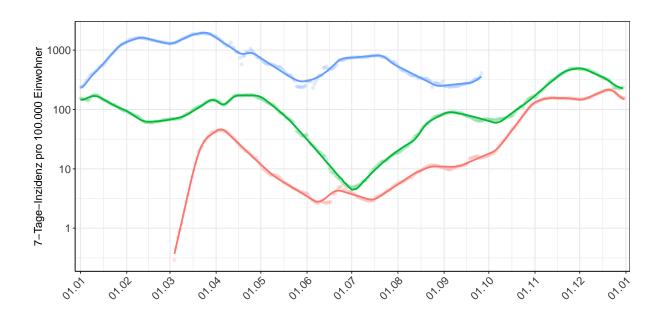



Abbildung 14: 7-Tage-Inzidenz pro 100.000 Einwohner in Deutschland nach Jahr, semilogarithmisch. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

#### 1.6.2 Krankheitsverlauf in den Bundesländern

Aus dem wöchentlichen Alters- und Geschlechtsdurchschnitt der Neuinfektionen, der Anzahl der wöchentlichen PCR-Test, dem Positivenanteil der Tests, dem Anteil der VOC B.1.1.7 und dem Anteil der geimpften Bevölkerung errechnen sich über die Zeit für die Bundesländer und für Deutschland die in Abb. 15 gezeigten Raten für die Hospitalisierung, für die Behandlung auf Intensivstation und für die Beatmeten. In Abb. 16 werden die zeitveränderlichen Sterberaten auf den verschiedenen Krankenhausstationen und der ambulant behandelten Fälle gezeigt.

Mithilfe dieser Raten werden die akute Belegung der Krankenhaus-, Intensiv- und Beatmungsbetten wie in Abb. 17 dargestellt gut beschrieben. Abbildungen 18 und 19 zeigen die Anzahl belegter ICU Betten in Deutschland im Jahresverlauf.

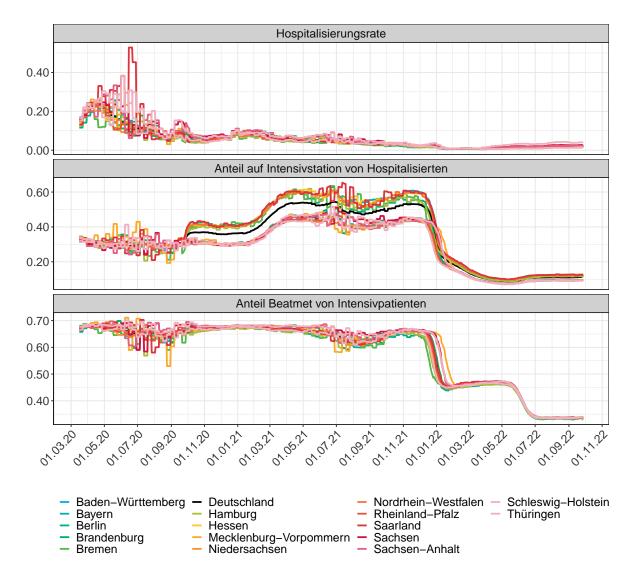



Abbildung 15: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit

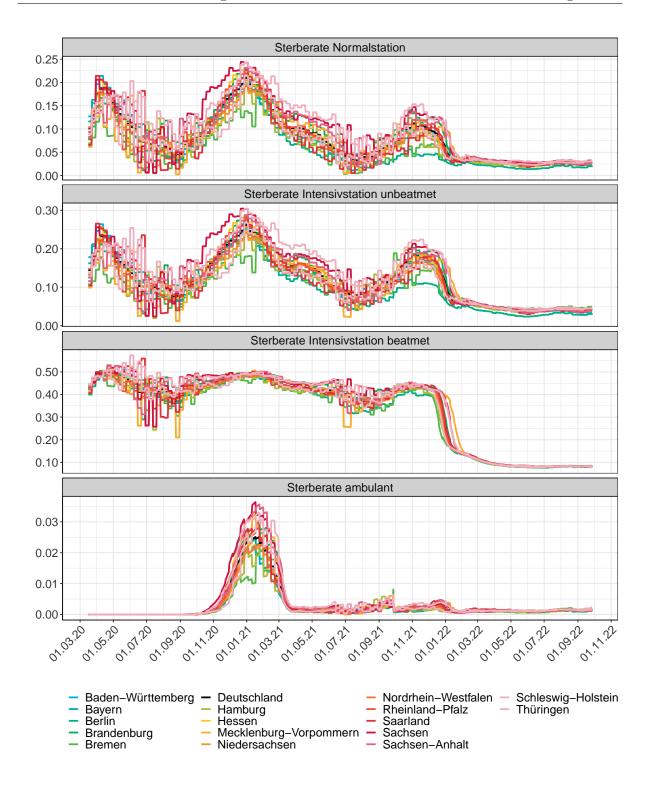



Abbildung 16: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit

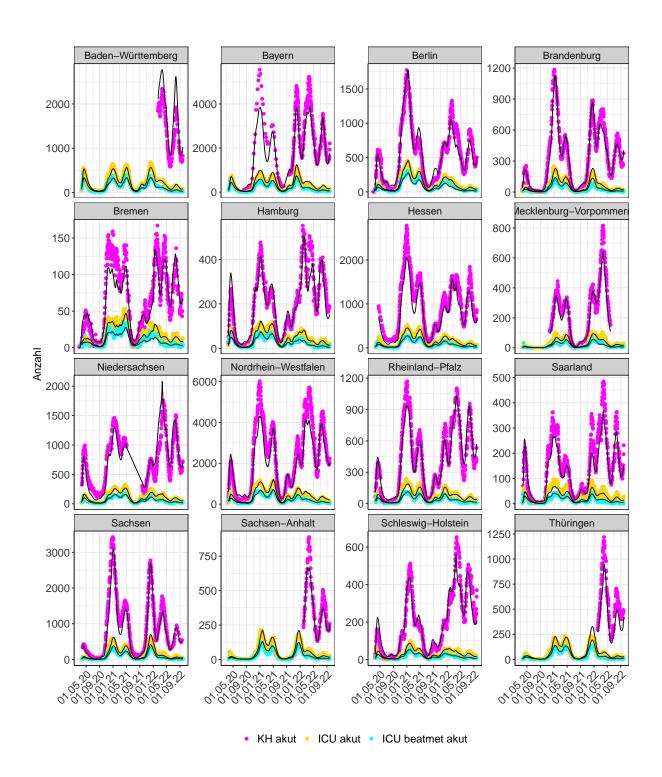



Abbildung 17: Deutschland nach Bundesländern - Modellbeschreibung der KH und ICU Belegung. Punkte: Gemeldete Belegungen - Linien: Modellbeschreibung

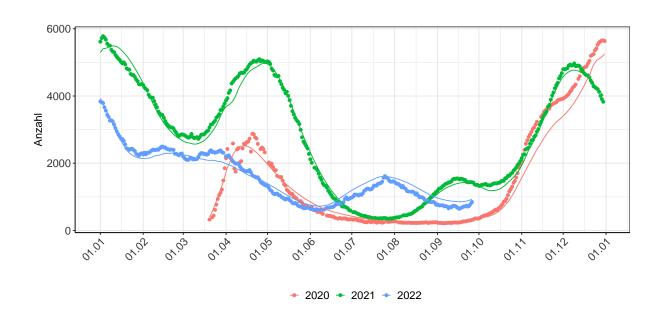



Abbildung 18: Deutschland - Modellbeschreibung der ICU Belegung nach Jahr. Punkte: Gemeldete Belegungen - Linien: Modellbeschreibung

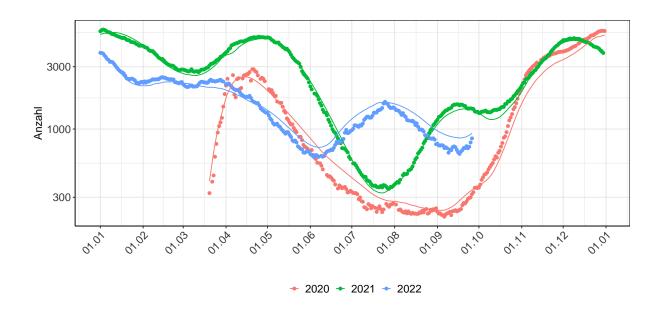



Abbildung 19: Deutschland - Modellbeschreibung der ICU Belegung nach Jahr, semilogarithmisch. Punkte: Gemeldete Belegungen - Linien: Modellbeschreibung

# 2 Baden-Württemberg

## 2.1 Infektionsgeschehen

Abb. 20 zeigt den R(t) Schätzwert für Baden-Württemberg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

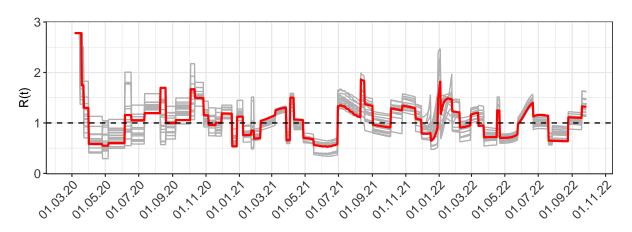



Abbildung 20: R(t) Werte über die Zeit für Baden-Württemberg

Abb. 21 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Baden-Württemberg basierend auf den abgeschätzten R(t)-Werten.

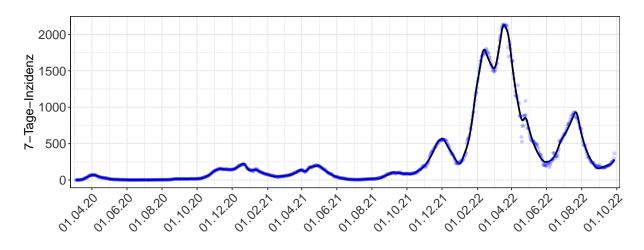



Abbildung 21: 7-Tage-Inzidenz pro 100.000 Einwohner in Baden-Württemberg. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 22 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Baden-Württemberg.

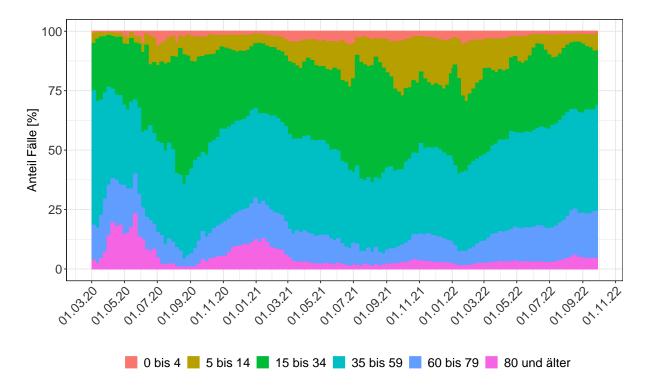



Abbildung 22: Alterverteilung der COVID-19 Fälle über die Zeit in Baden-Württemberg. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

## 2.2 Krankheitsverlauf

Abb. 23 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Baden-Württemberg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

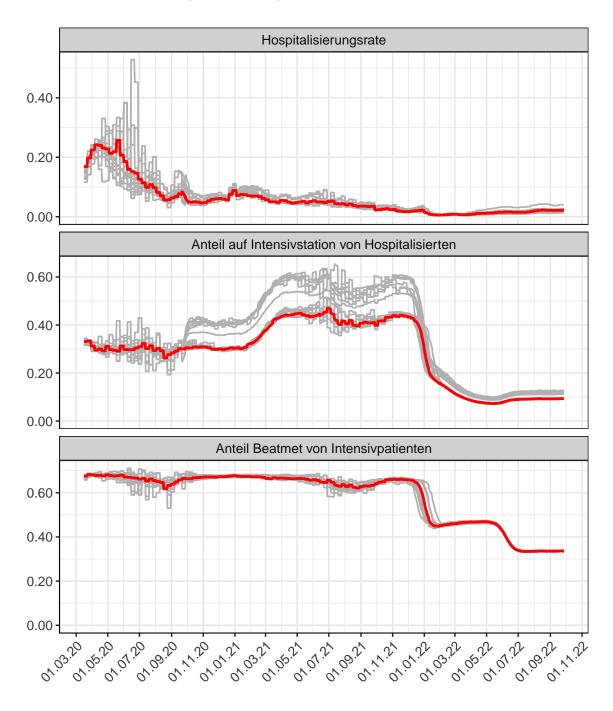



Abbildung 23: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Baden-Württemberg

Abb. 24 zeigt die Veränderung von Sterberaten für Baden-Württemberg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

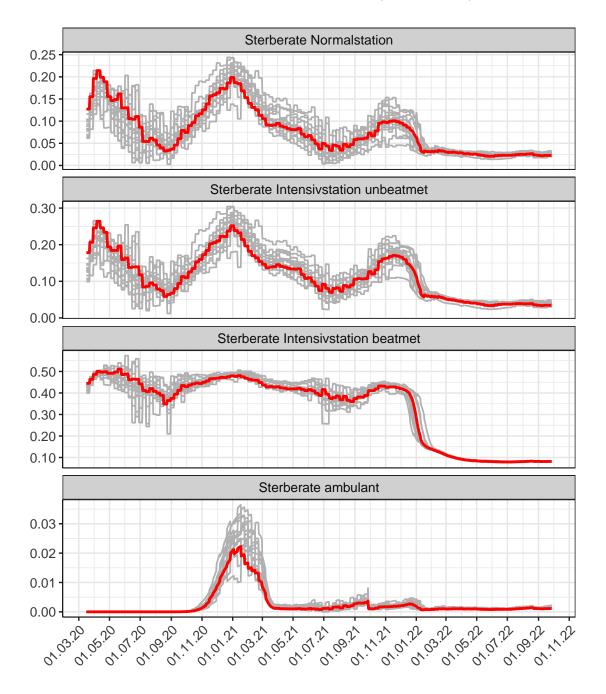



Abbildung 24: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Baden-Württemberg

Abb. 25 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Baden-Württemberg dar.

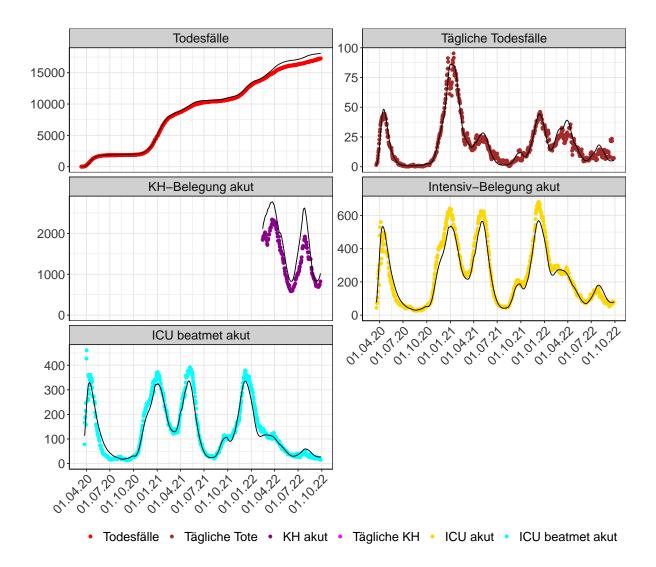



Abbildung 25: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Baden-Württemberg. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 3 Bayern

## 3.1 Infektionsgeschehen

Abb. 26 zeigt den R(t) Schätzwert für Bayern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

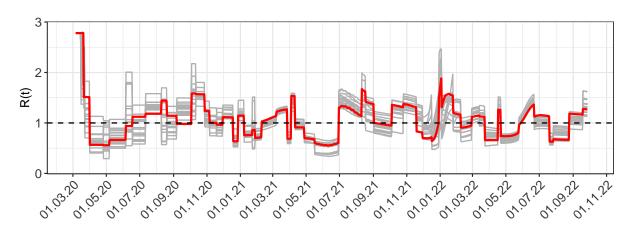



Abbildung 26: R(t) Werte über die Zeit für Bayern

Abb. 27 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Bayern basierend auf den abgeschätzten R(t)-Werten.

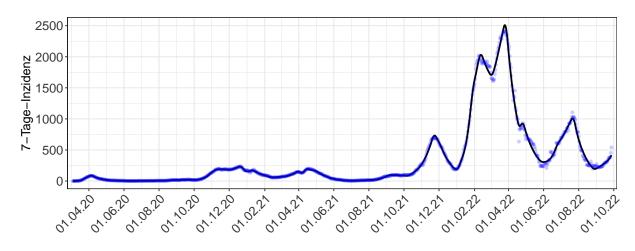



Abbildung 27: 7-Tage-Inzidenz pro 100.000 Einwohner in Bayern. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 28 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Bayern.

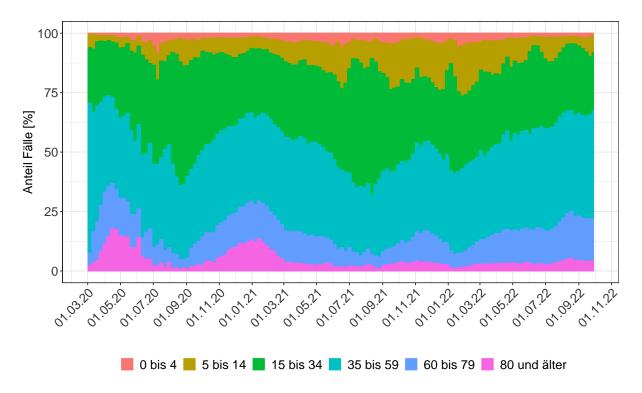



Abbildung 28: Alterverteilung der COVID-19 Fälle über die Zeit in Bayern. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

## 3.2 Krankheitsverlauf

Abb. 29 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Bayern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

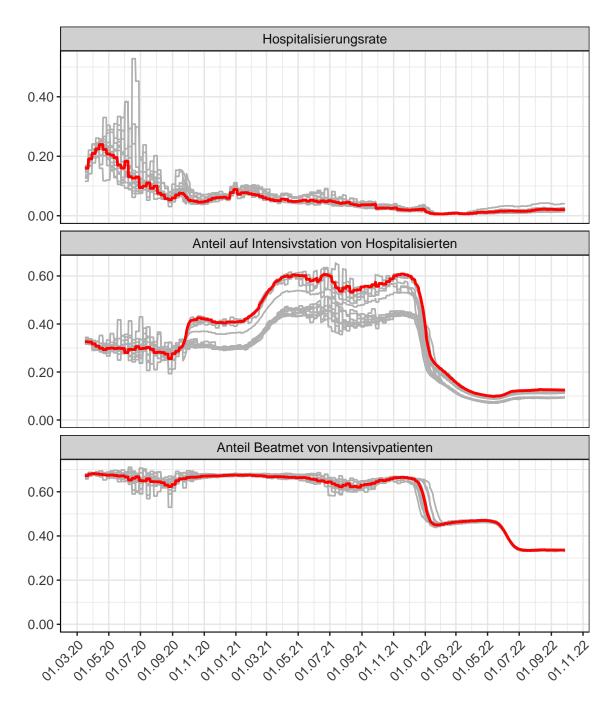



Abbildung 29: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Bayern

Abb. 30 zeigt die Veränderung von Sterberaten für Bayern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).



Abbildung 30: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Bayern

Abb. 31 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Bayern dar.

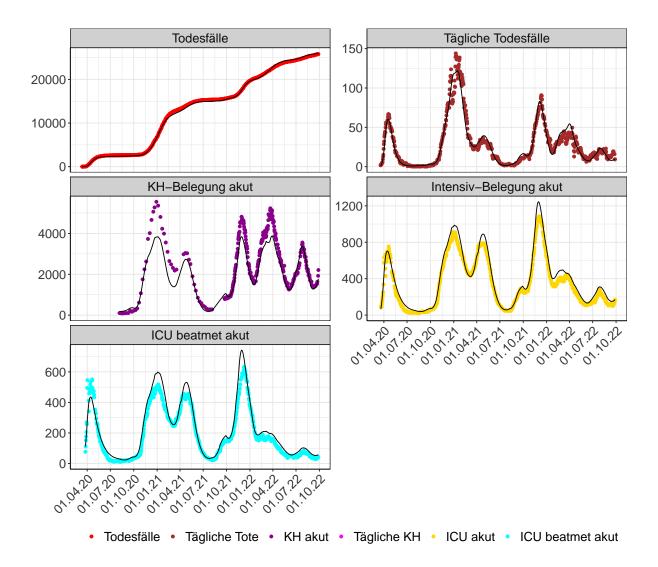



Abbildung 31: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Bayern. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 4 Berlin

#### 4.1 Infektionsgeschehen

Abb. 32 zeigt den R(t) Schätzwert für Berlin (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

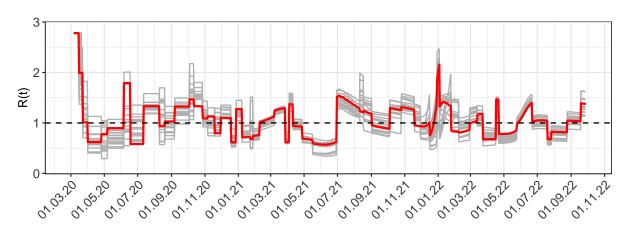



Abbildung 32: R(t) Werte über die Zeit für Berlin

Abb. 33 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Berlin basierend auf den abgeschätzten R(t)-Werten.

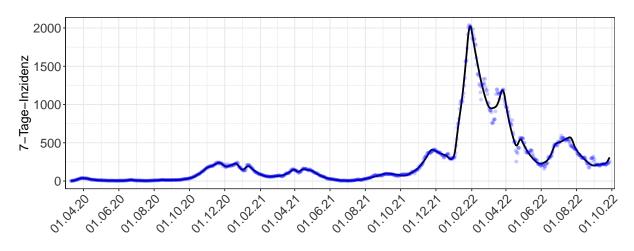



Abbildung 33: 7-Tage-Inzidenz pro 100.000 Einwohner in Berlin. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 34 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Berlin.

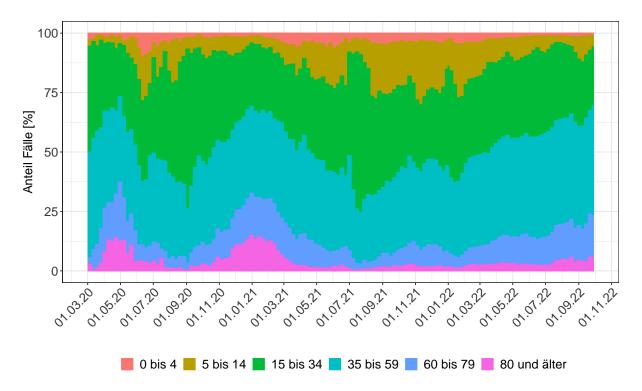



Abbildung 34: Alterverteilung der COVID-19 Fälle über die Zeit in Berlin. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 35 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Berlin (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

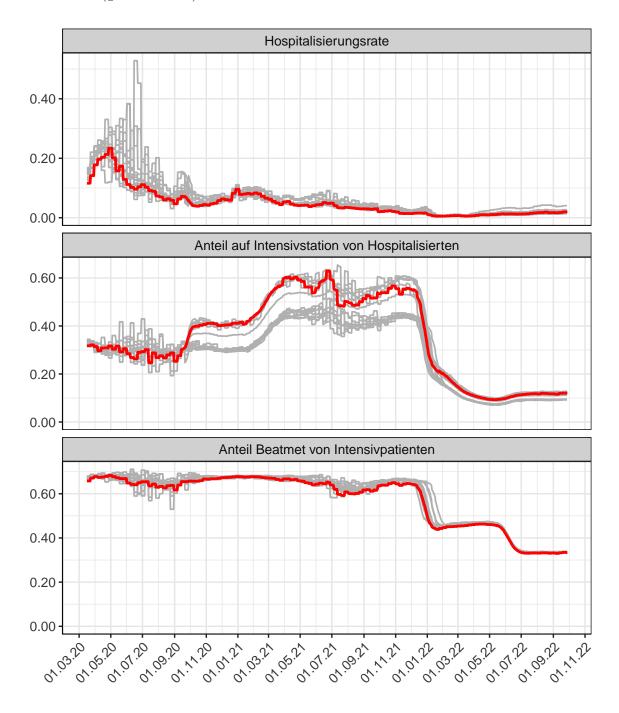



Abbildung 35: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Berlin

Abb. 36 zeigt die Veränderung von Sterberaten für Berlin (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

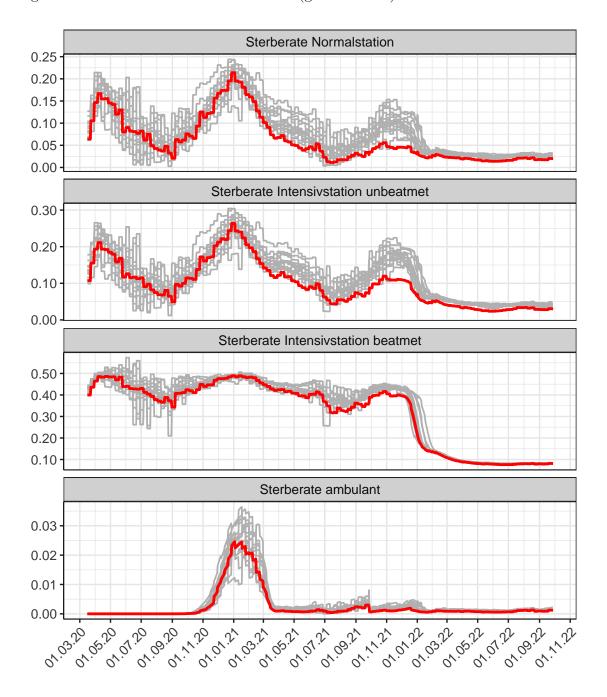



Abbildung 36: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Berlin

Abb. 37 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Berlin dar.

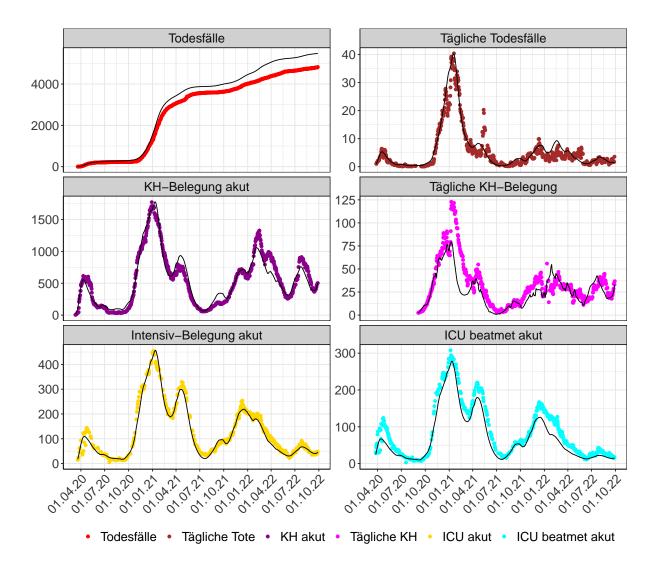



Abbildung 37: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Berlin. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 5 Brandenburg

#### 5.1 Infektionsgeschehen

Abb. 38 zeigt den R(t) Schätzwert für Brandenburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

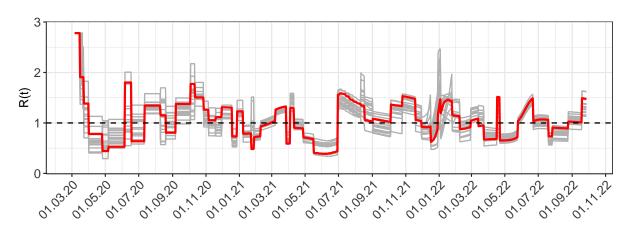



Abbildung 38: R(t) Werte über die Zeit für Brandenburg

Abb. 39 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Brandenburg basierend auf den abgeschätzten R(t)-Werten.

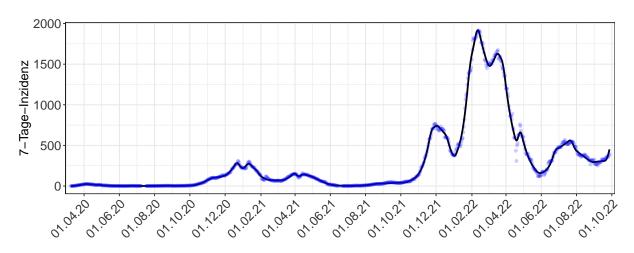



Abbildung 39: 7-Tage-Inzidenz pro 100.000 Einwohner in Brandenburg. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 40 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Brandenburg.

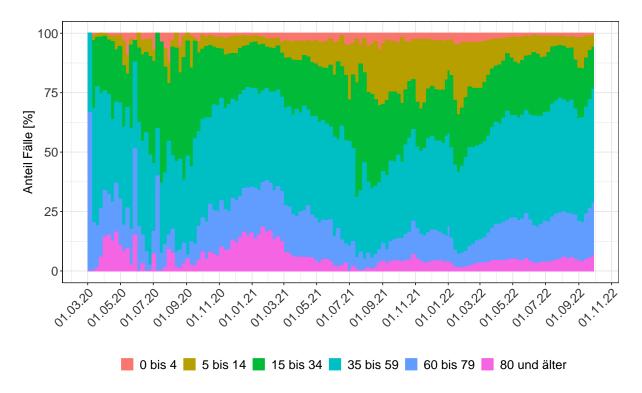



Abbildung 40: Alterverteilung der COVID-19 Fälle über die Zeit in Brandenburg. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 41 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Brandenburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

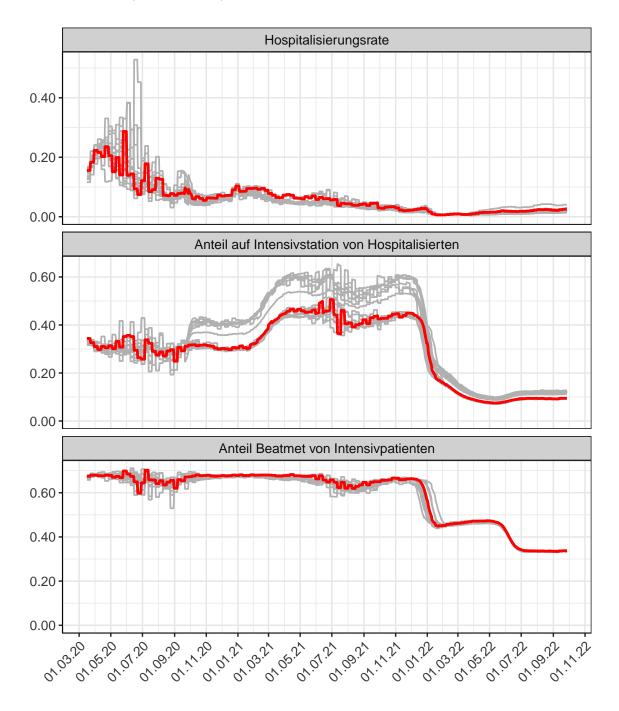



Abbildung 41: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Brandenburg

Abb. 42 zeigt die Veränderung von Sterberaten für Brandenburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

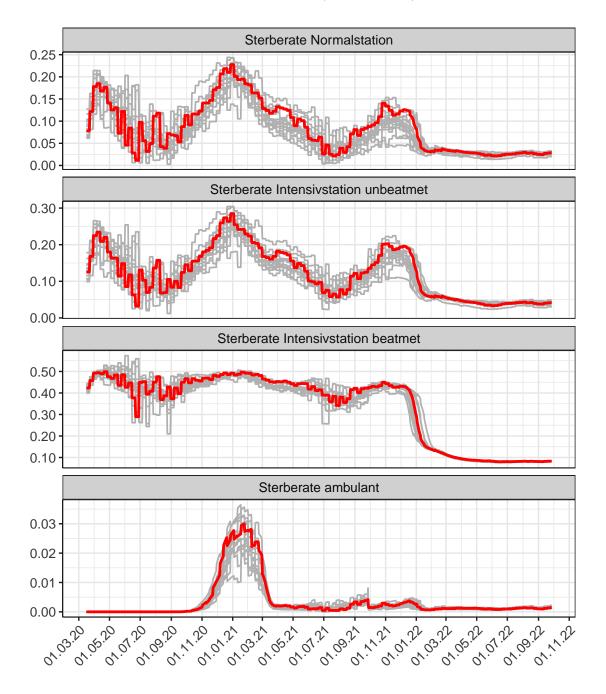



Abbildung 42: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Brandenburg

Abb. 43 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Brandenburg dar.

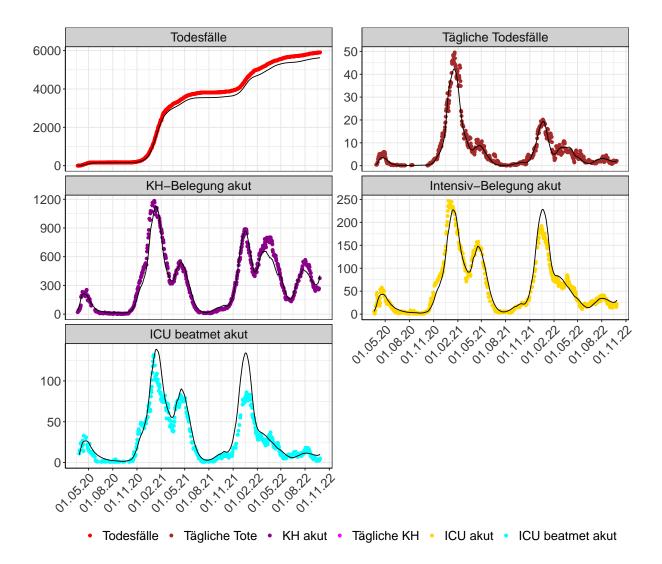



Abbildung 43: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Brandenburg. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 6 Bremen

#### 6.1 Infektionsgeschehen

Abb. 44 zeigt den R(t) Schätzwert für Bremen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

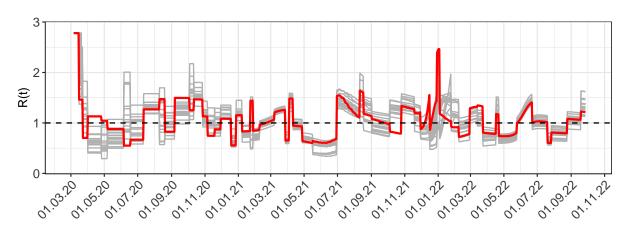



Abbildung 44: R(t) Werte über die Zeit für Bremen

Abb. 45 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Bremen basierend auf den abgeschätzten R(t)-Werten.

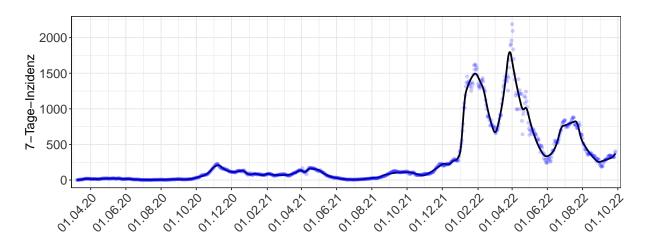



Abbildung 45: 7-Tage-Inzidenz pro 100.000 Einwohner in Bremen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 46 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Bremen.

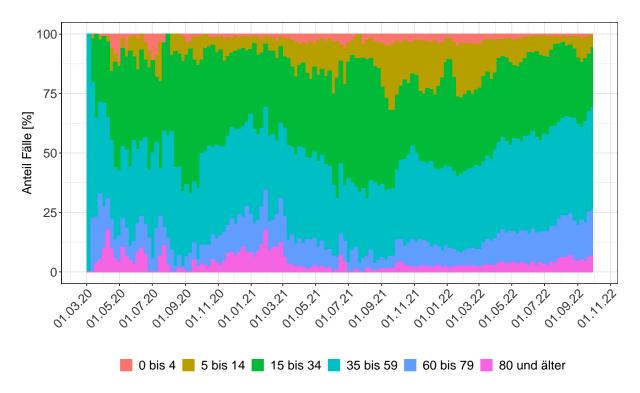



Abbildung 46: Alterverteilung der COVID-19 Fälle über die Zeit in Bremen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 47 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Bremen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

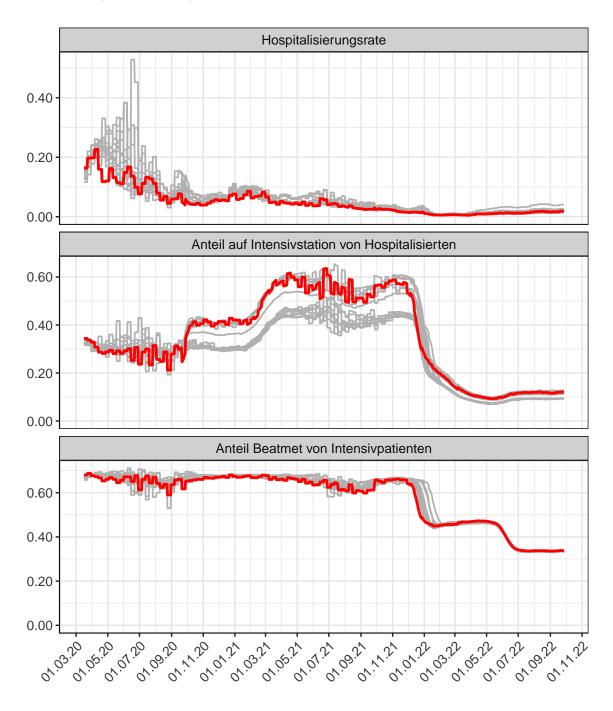



Abbildung 47: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Bremen

Abb. 48 zeigt die Veränderung von Sterberaten für Bremen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

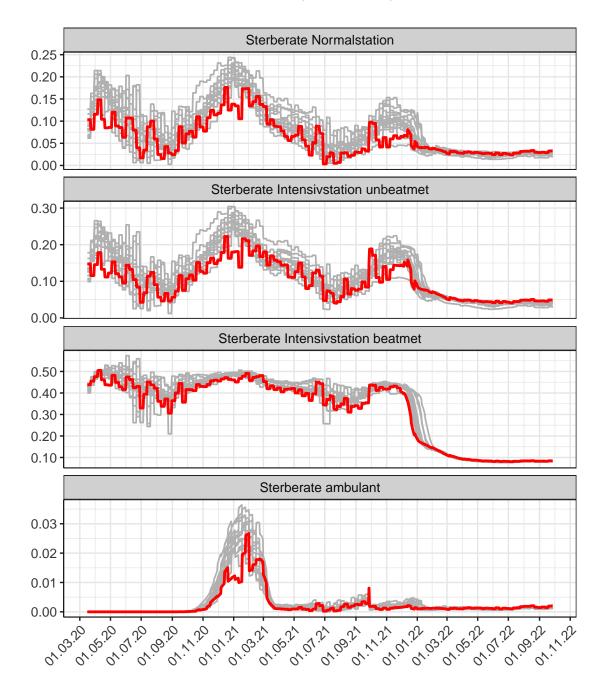



Abbildung 48: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Bremen

Abb. 49 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Bremen dar.

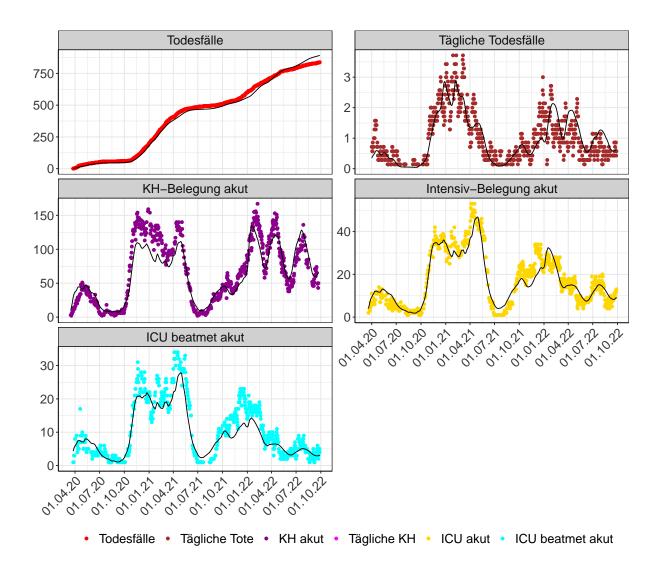



Abbildung 49: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Bremen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 7 Hamburg

#### 7.1 Infektionsgeschehen

Abb. 50 zeigt den R(t) Schätzwert für Hamburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

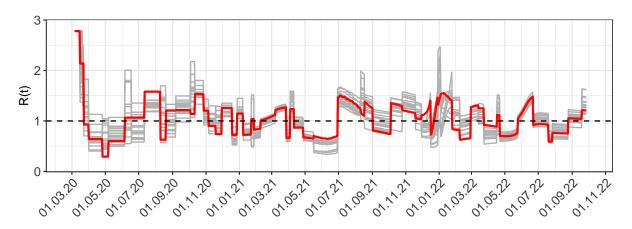



Abbildung 50: R(t) Werte über die Zeit für Hamburg

Abb. 51 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Hamburg basierend auf den abgeschätzten R(t)-Werten.

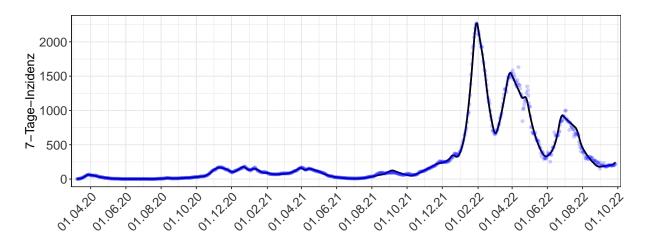



Abbildung 51: 7-Tage-Inzidenz pro 100.000 Einwohner in Hamburg. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 52 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Hamburg.

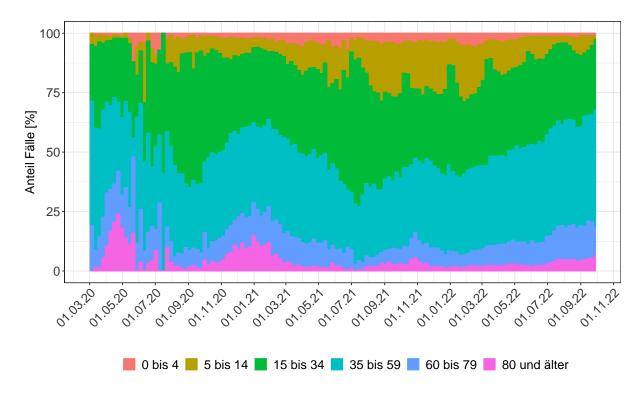



Abbildung 52: Alterverteilung der COVID-19 Fälle über die Zeit in Hamburg. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 53 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Hamburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

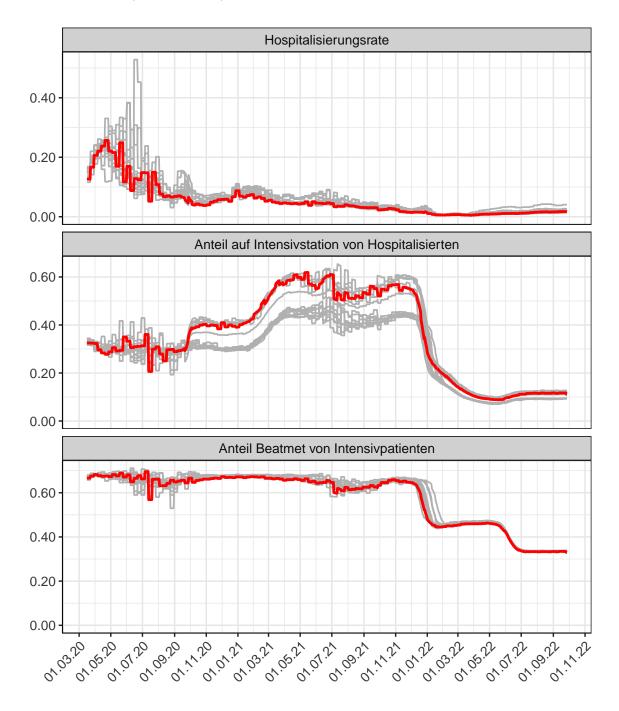



Abbildung 53: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Hamburg

Abb. 54 zeigt die Veränderung von Sterberaten für Hamburg (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

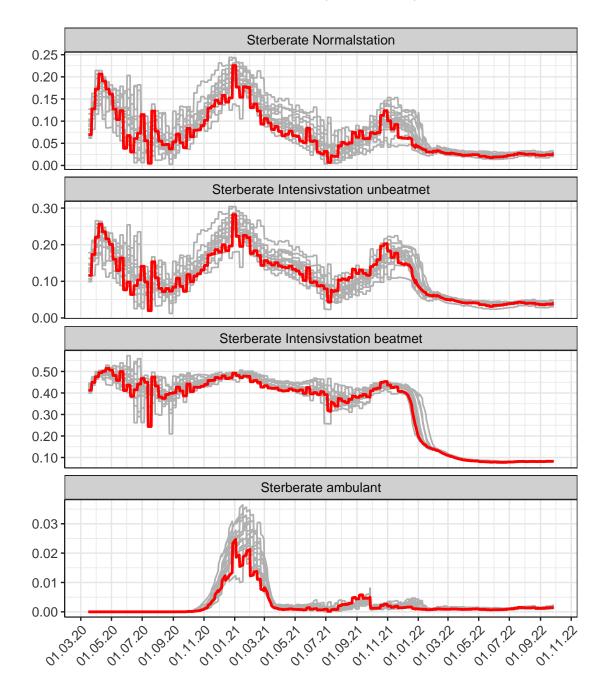



Abbildung 54: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Hamburg

Abb. 55 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Hamburg dar.

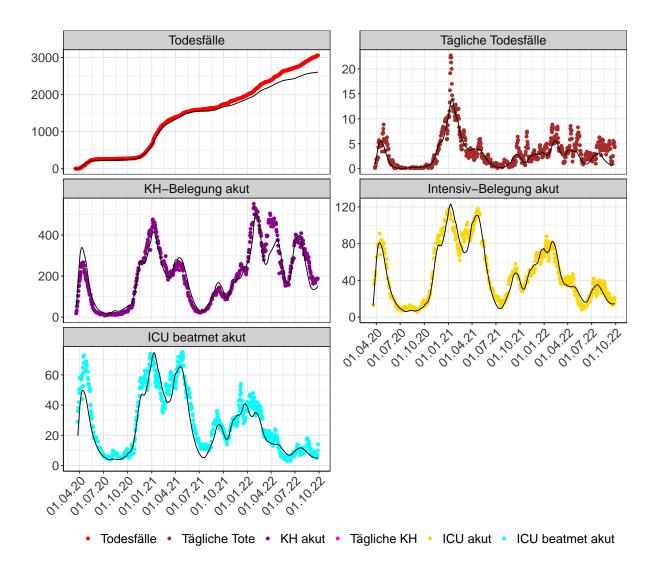



Abbildung 55: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Hamburg. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 8 Hessen

#### 8.1 Infektionsgeschehen

Abb. 56 zeigt den R(t) Schätzwert für Hessen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

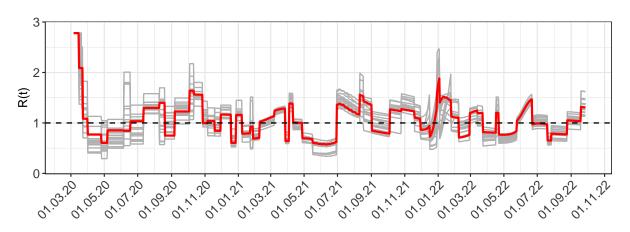



Abbildung 56: R(t) Werte über die Zeit für Hessen

Abb. 57 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Hessen basierend auf den abgeschätzten R(t)-Werten.

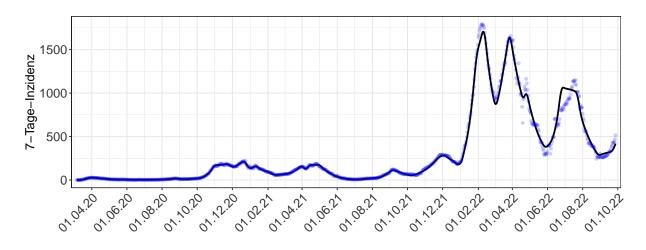



Abbildung 57: 7-Tage-Inzidenz pro 100.000 Einwohner in Hessen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 58 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Hessen.

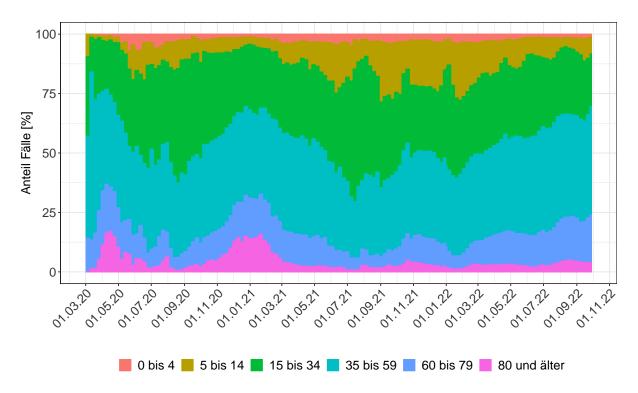



Abbildung 58: Alterverteilung der COVID-19 Fälle über die Zeit in Hessen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 59 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Hessen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

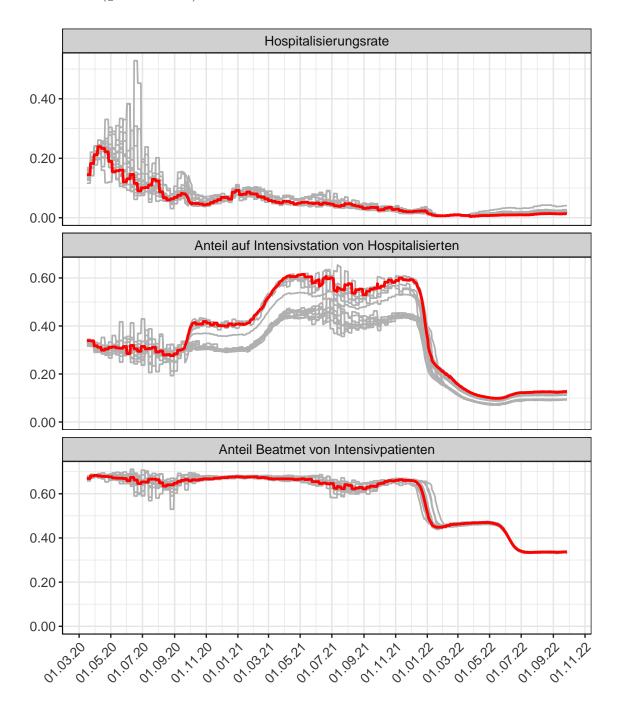



Abbildung 59: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Hessen

Abb. 60 zeigt die Veränderung von Sterberaten für Hessen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

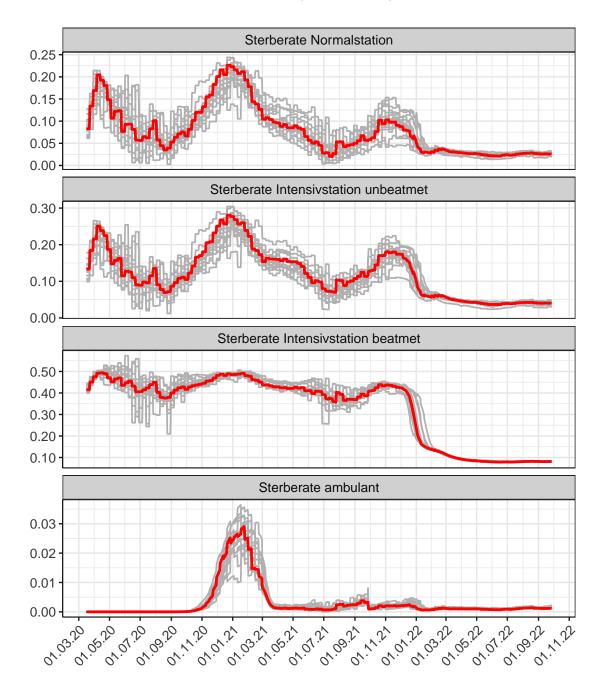



Abbildung 60: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Hessen

Abb. 61 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Hessen dar.

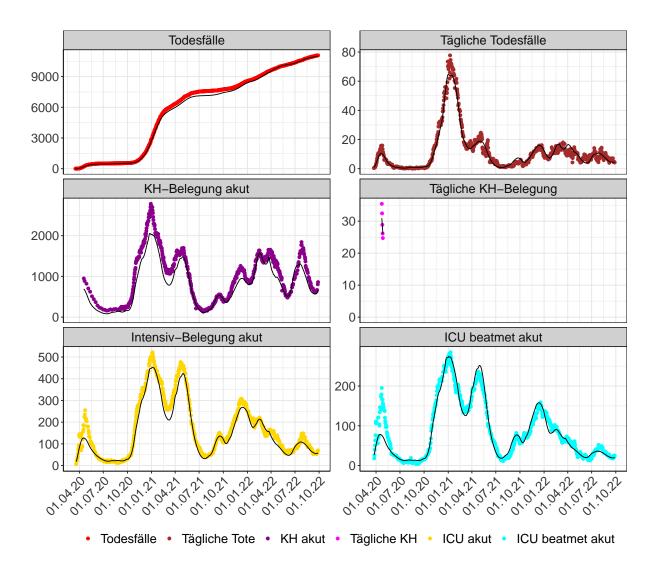



Abbildung 61: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Hessen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 9 Mecklenburg-Vorpommern

#### 9.1 Infektionsgeschehen

Abb. 62 zeigt den R(t) Schätzwert für Mecklenburg-Vorpommern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

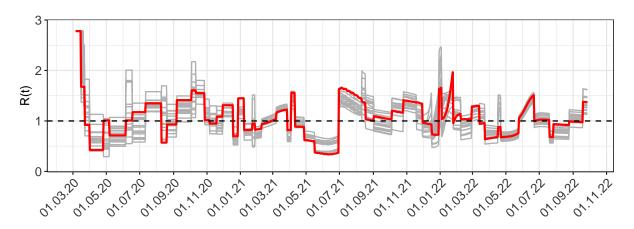



Abbildung 62: R(t) Werte über die Zeit für Mecklenburg-Vorpommern

Abb. 63 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Mecklenburg-Vorpommern basierend auf den abgeschätzten R(t)-Werten.

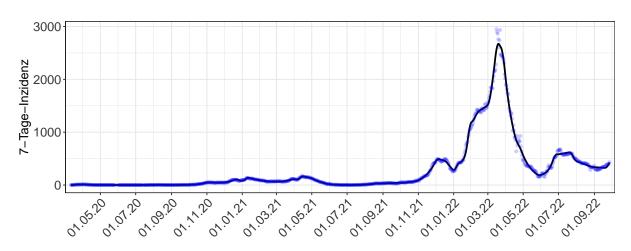



Abbildung 63: 7-Tage-Inzidenz pro 100.000 Einwohner in Mecklenburg-Vorpommern. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 64 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Mecklenburg-Vorpommern.

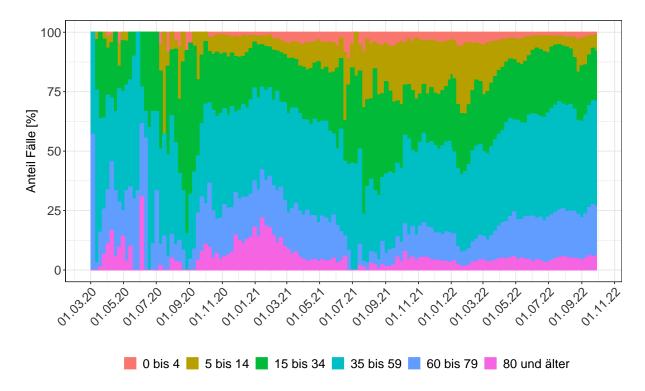



Abbildung 64: Alterverteilung der COVID-19 Fälle über die Zeit in Mecklenburg-Vorpommern. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 65 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Mecklenburg-Vorpommern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

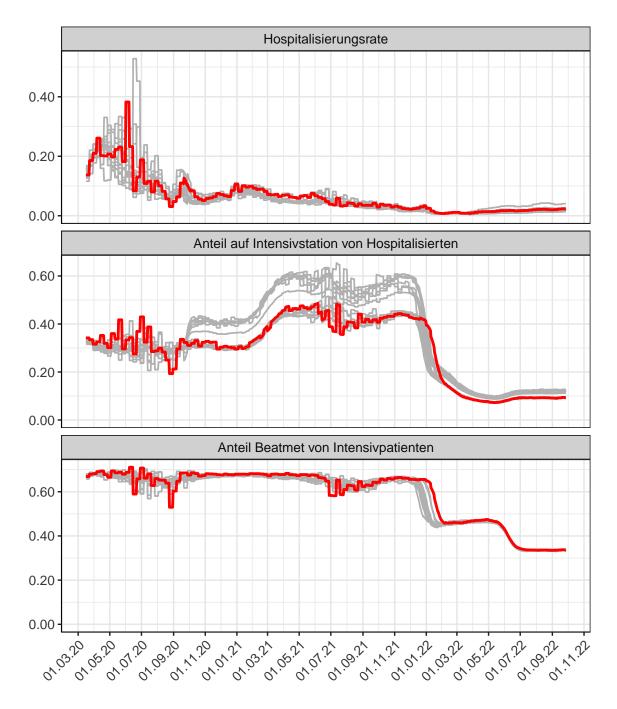



Abbildung 65: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Mecklenburg-Vorpommern

Abb. 66 zeigt die Veränderung von Sterberaten für Mecklenburg-Vorpommern (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

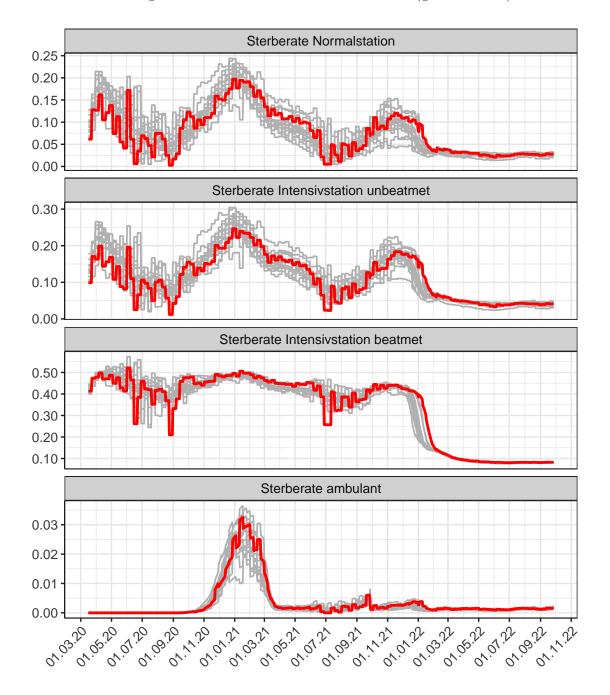



Abbildung 66: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Mecklenburg-Vorpommern

Abb. 67 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Mecklenburg-Vorpommern dar.

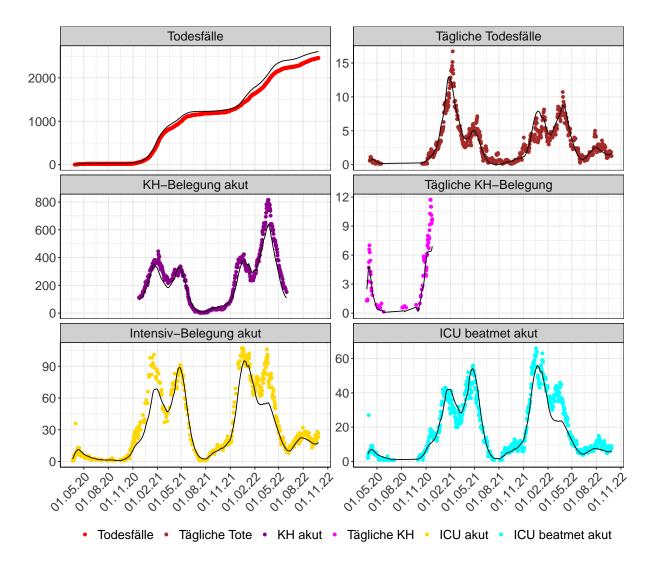



Abbildung 67: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Mecklenburg-Vorpommern. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

## 10 Niedersachsen

#### 10.1 Infektionsgeschehen

Abb. 68 zeigt den R(t) Schätzwert für Niedersachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

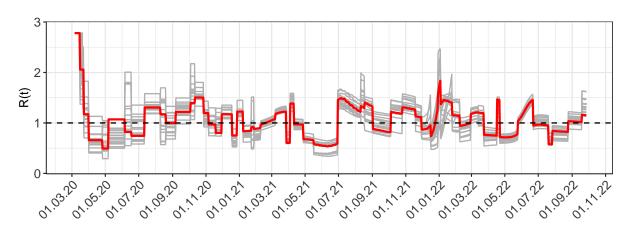



Abbildung 68: R(t) Werte über die Zeit für Niedersachsen

Abb. 69 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Niedersachsen basierend auf den abgeschätzten R(t)-Werten.

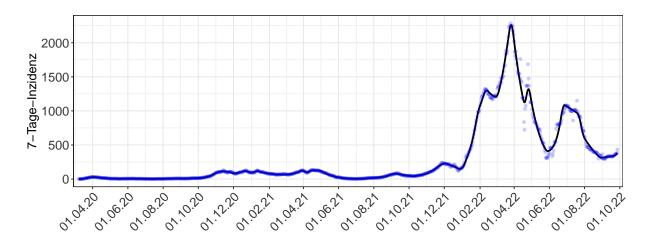



Abbildung 69: 7-Tage-Inzidenz pro 100.000 Einwohner in Niedersachsen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 70 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Niedersachsen.

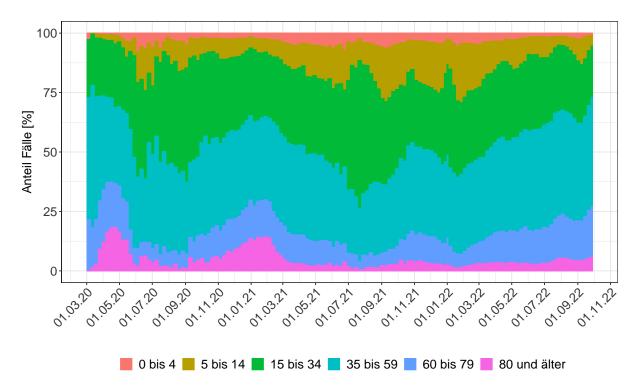



Abbildung 70: Alterverteilung der COVID-19 Fälle über die Zeit in Niedersachsen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 71 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Niedersachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

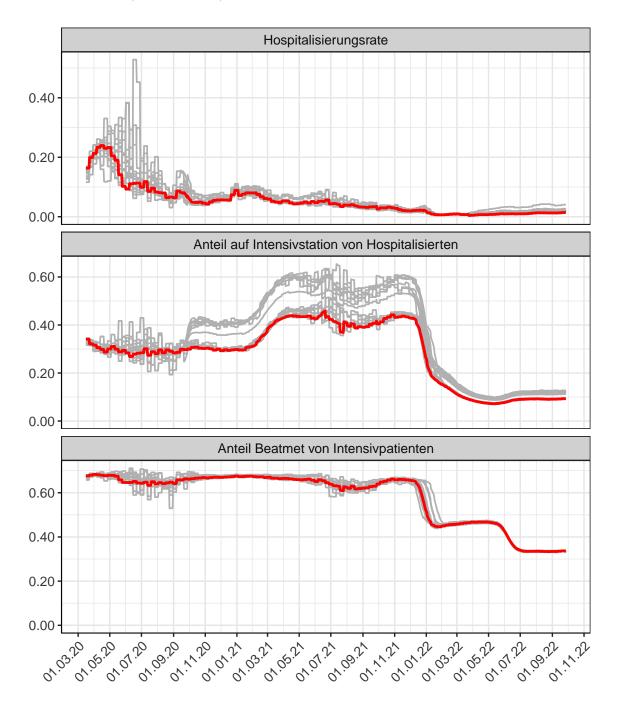



Abbildung 71: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Niedersachsen

Abb. 72 zeigt die Veränderung von Sterberaten für Niedersachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

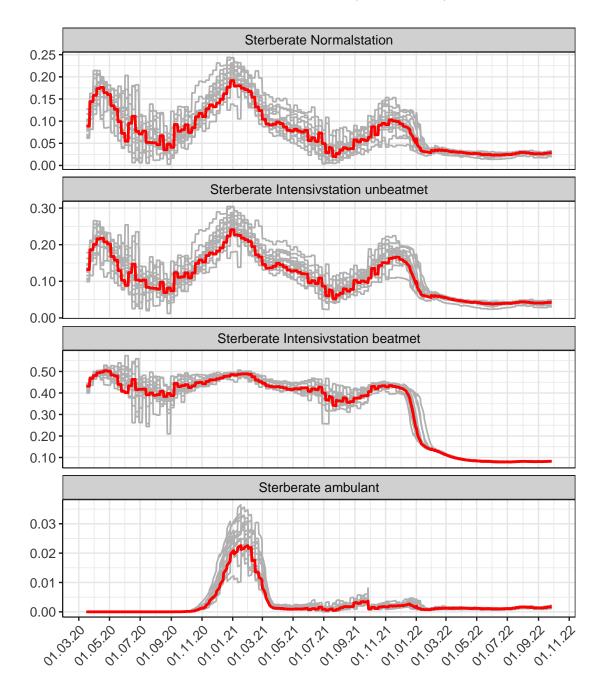



Abbildung 72: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Niedersachsen

Abb. 73 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Niedersachsen dar.

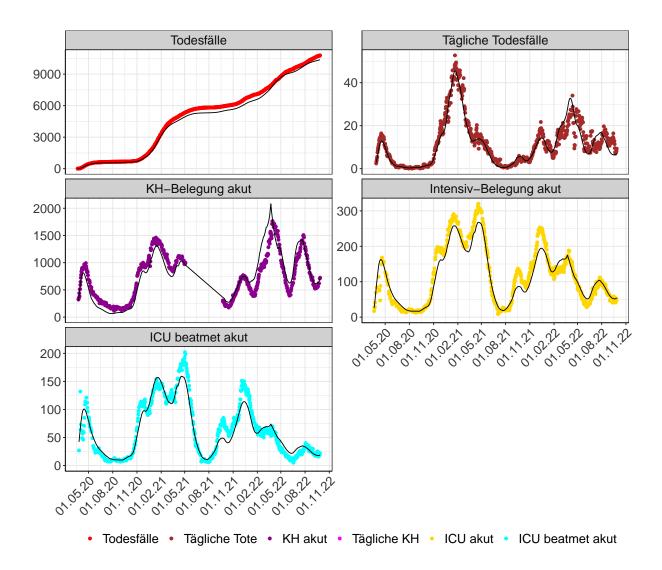



Abbildung 73: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Niedersachsen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

#### 11 Nordrhein-Westfalen

#### 11.1 Infektionsgeschehen

Abb. 74 zeigt den R(t) Schätzwert für Nordrhein-Westfalen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

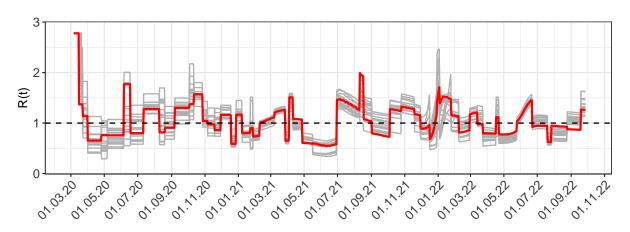



Abbildung 74: R(t) Werte über die Zeit für Nordrhein-Westfalen

Abb. 75 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Nordrhein-Westfalen basierend auf den abgeschätzten R(t)-Werten.

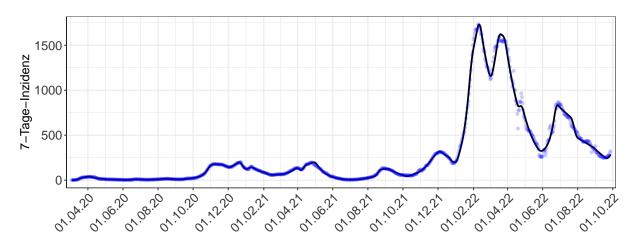



Abbildung 75: 7-Tage-Inzidenz pro 100.000 Einwohner in Nordrhein-Westfalen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 76 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Nordrhein-Westfalen.

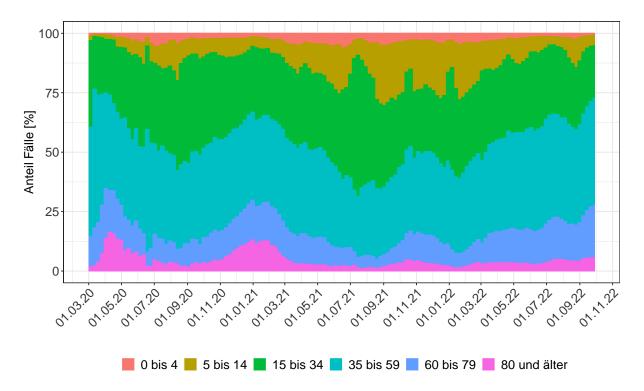



Abbildung 76: Alterverteilung der COVID-19 Fälle über die Zeit in Nordrhein-Westfalen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 77 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Nordrhein-Westfalen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

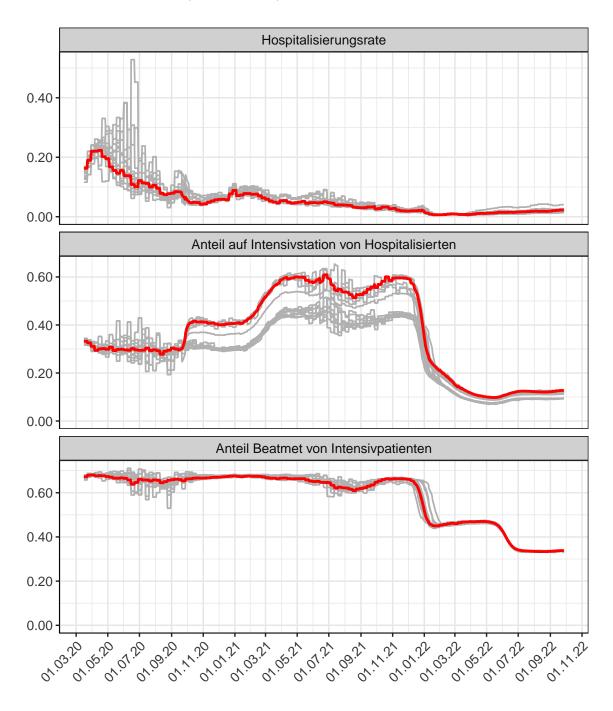



Abbildung 77: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Nordrhein-Westfalen

Abb. 78 zeigt die Veränderung von Sterberaten für Nordrhein-Westfalen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

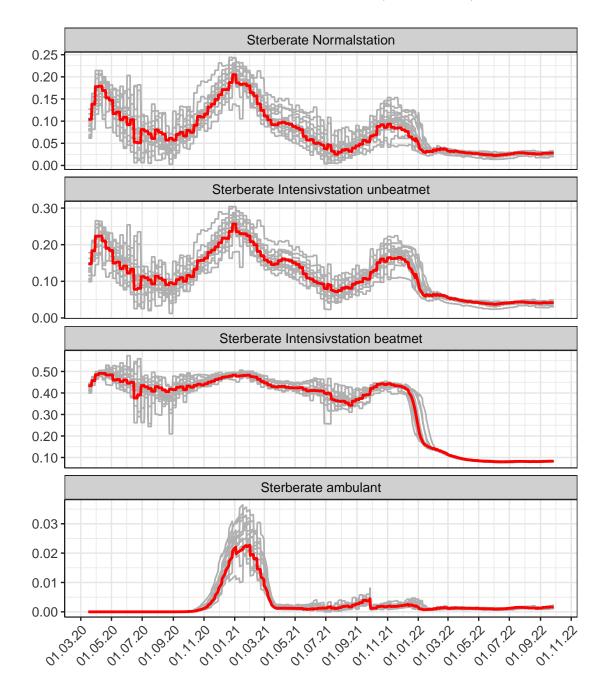



Abbildung 78: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Nordrhein-Westfalen

Abb. 79 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Nordrhein-Westfalen dar.

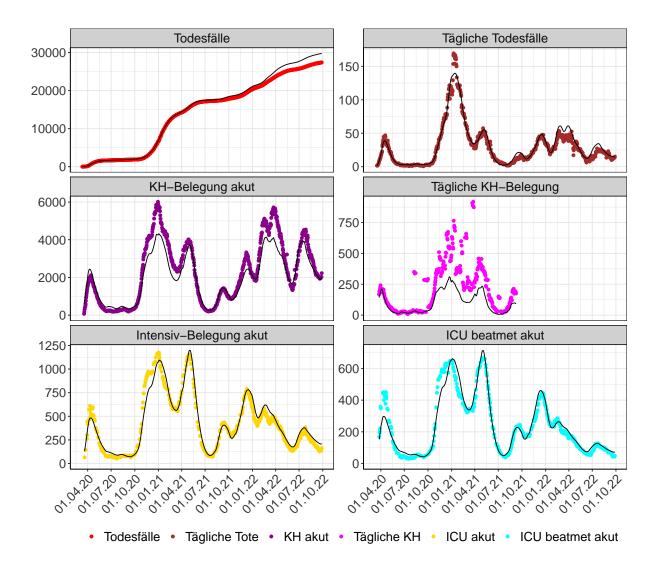



Abbildung 79: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Nordrhein-Westfalen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 12 Rheinland-Pfalz

#### 12.1 Infektionsgeschehen

Abb. 80 zeigt den R(t) Schätzwert für Rheinland-Pfalz (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

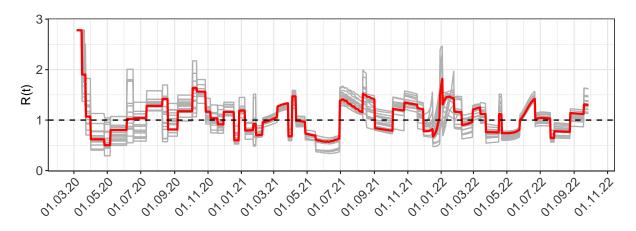



Abbildung 80: R(t) Werte über die Zeit für Rheinland-Pfalz

Abb. 81 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Rheinland-Pfalz basierend auf den abgeschätzten R(t)-Werten.

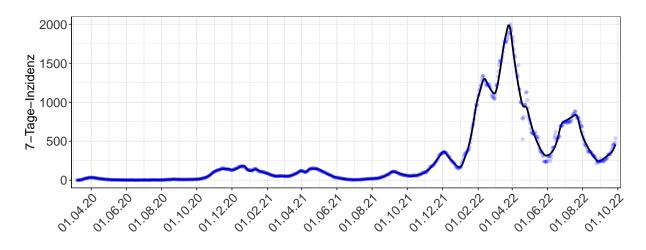



Abbildung 81: 7-Tage-Inzidenz pro 100.000 Einwohner in Rheinland-Pfalz. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 82 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Rheinland-Pfalz.

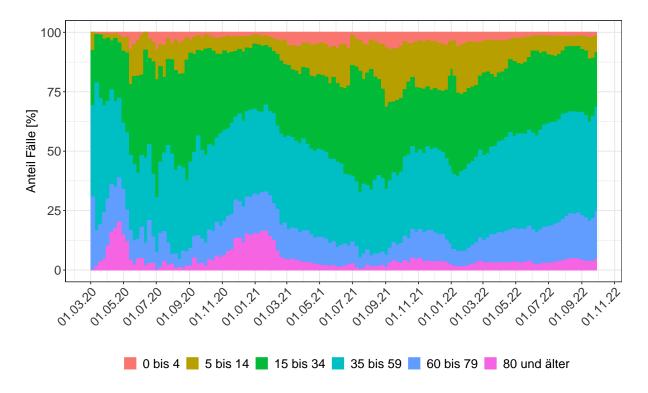



Abbildung 82: Alterverteilung der COVID-19 Fälle über die Zeit in Rheinland-Pfalz. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 83 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Rheinland-Pfalz (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

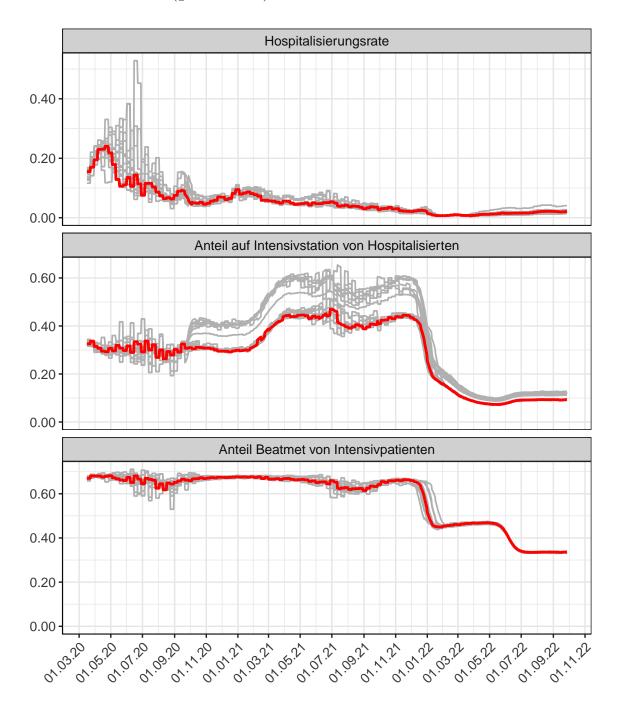



Abbildung 83: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Rheinland-Pfalz

Abb. 84 zeigt die Veränderung von Sterberaten für Rheinland-Pfalz (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

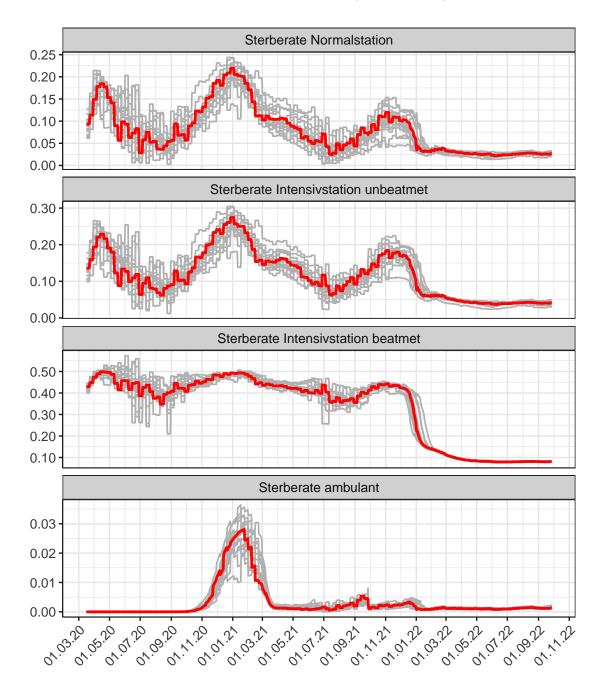



Abbildung 84: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Rheinland-Pfalz

Abb. 85 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Rheinland-Pfalz dar.

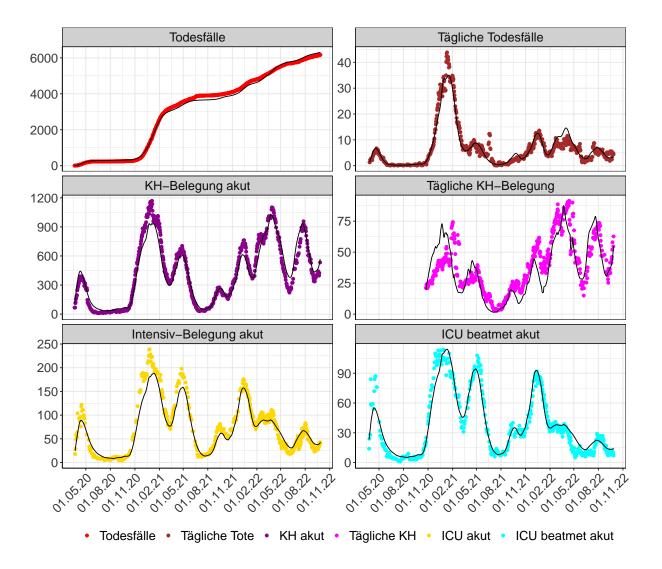



Abbildung 85: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Rheinland-Pfalz. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 13 Saarland

#### 13.1 Infektionsgeschehen

Abb. 86 zeigt den R(t) Schätzwert für Saarland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

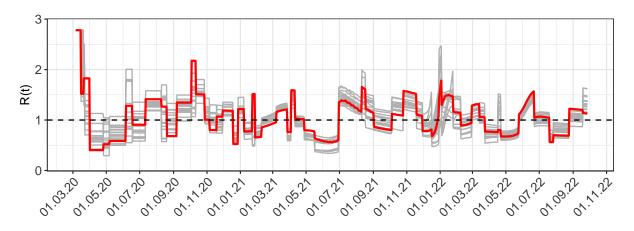



Abbildung 86: R(t) Werte über die Zeit für Saarland

Abb. 87 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Saarland basierend auf den abgeschätzten R(t)-Werten.

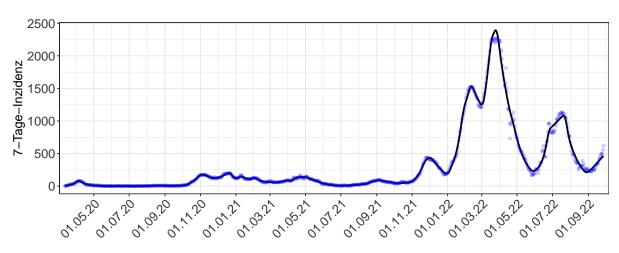



Abbildung 87: 7-Tage-Inzidenz pro 100.000 Einwohner in Saarland. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 88 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Saarland.

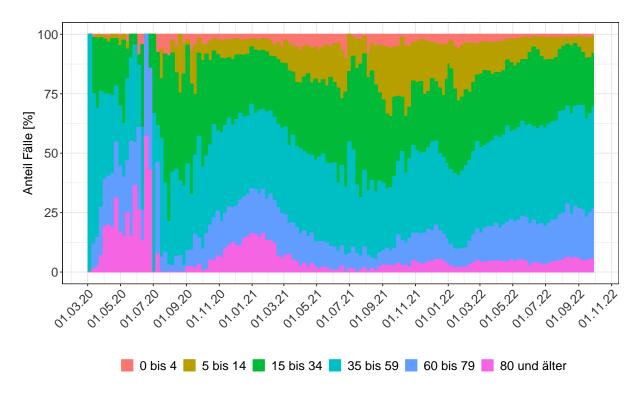



Abbildung 88: Alterverteilung der COVID-19 Fälle über die Zeit in Saarland. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 89 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Saarland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

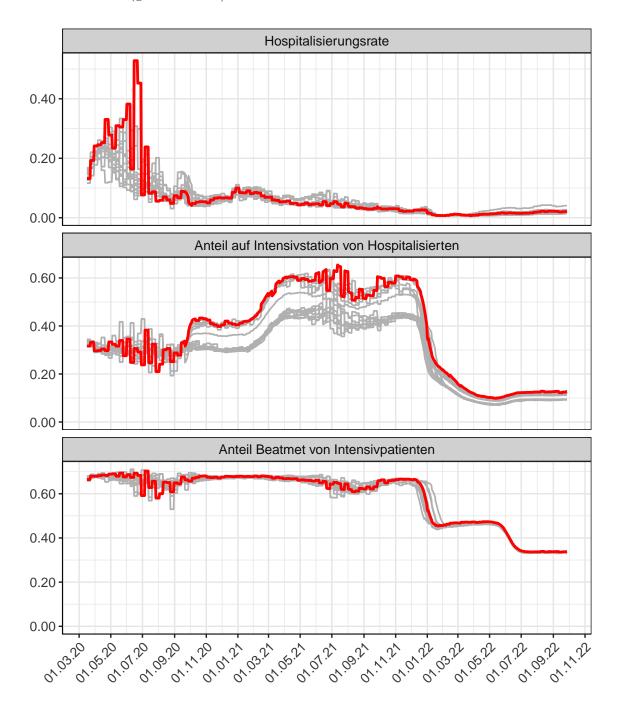



Abbildung 89: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Saarland

Abb. 90 zeigt die Veränderung von Sterberaten für Saarland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

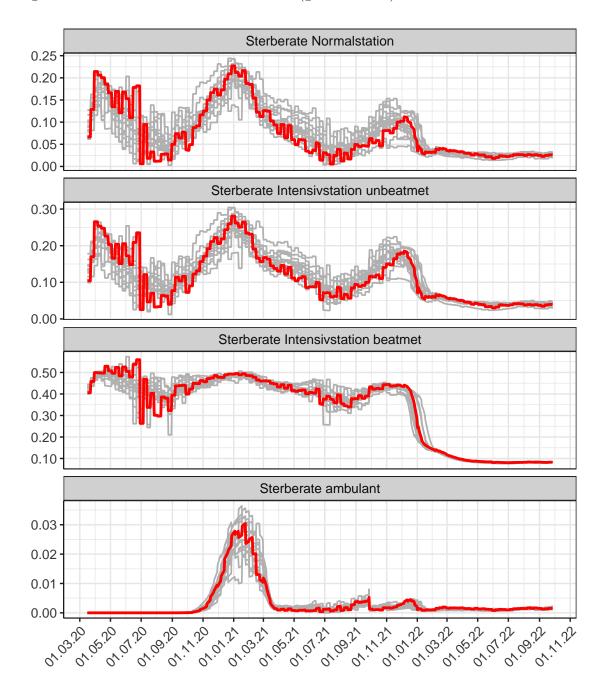



Abbildung 90: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Saarland

Abb. 91 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Saarland dar.

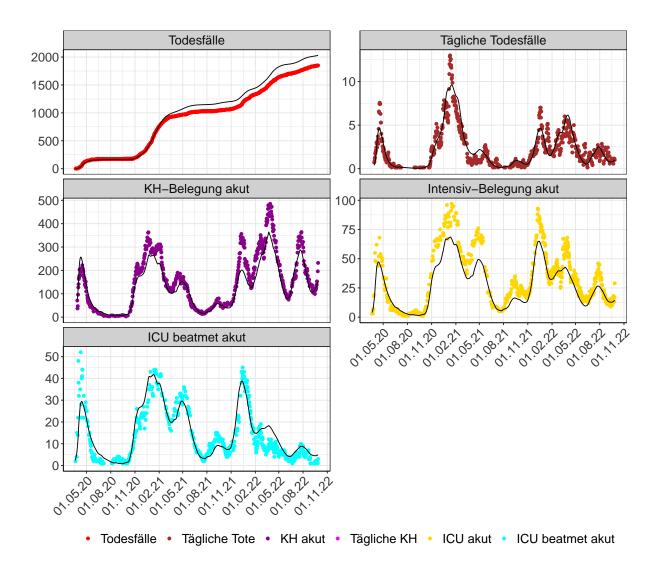



Abbildung 91: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Saarland. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 14 Sachsen

#### 14.1 Infektionsgeschehen

Abb. 92 zeigt den R(t) Schätzwert für Sachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

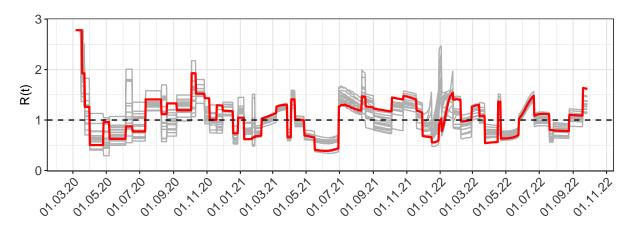



Abbildung 92: R(t) Werte über die Zeit für Sachsen

Abb. 93 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Sachsen basierend auf den abgeschätzten R(t)-Werten.

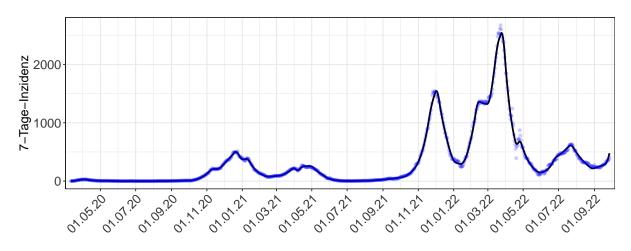
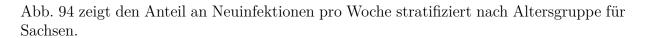




Abbildung 93: 7-Tage-Inzidenz pro 100.000 Einwohner in Sachsen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung



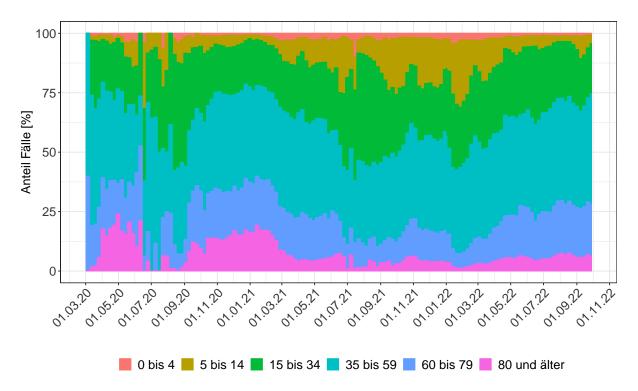



Abbildung 94: Alterverteilung der COVID-19 Fälle über die Zeit in Sachsen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 95 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Sachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

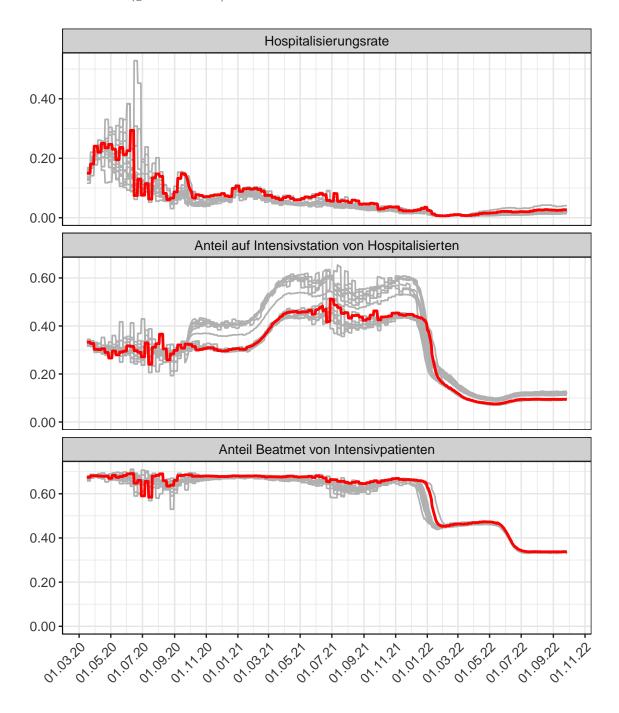



Abbildung 95: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Sachsen

Abb. 96 zeigt die Veränderung von Sterberaten für Sachsen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

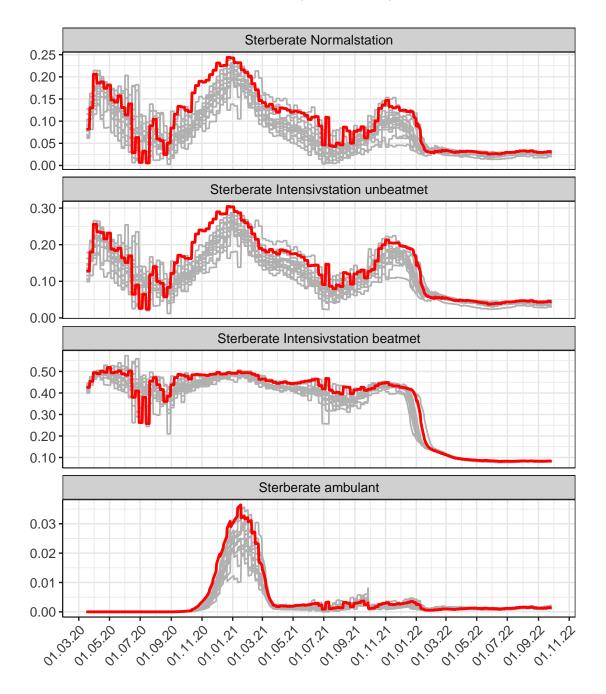



Abbildung 96: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Sachsen

Abb. 97 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Sachsen dar.



Abbildung 97: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Sachsen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 15 Sachsen-Anhalt

#### 15.1 Infektionsgeschehen

Abb. 98 zeigt den R(t) Schätzwert für Sachsen-Anhalt (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

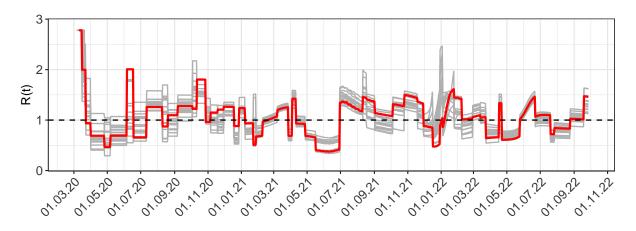



Abbildung 98: R(t) Werte über die Zeit für Sachsen-Anhalt

Abb. 99 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Sachsen-Anhalt basierend auf den abgeschätzten R(t)-Werten.

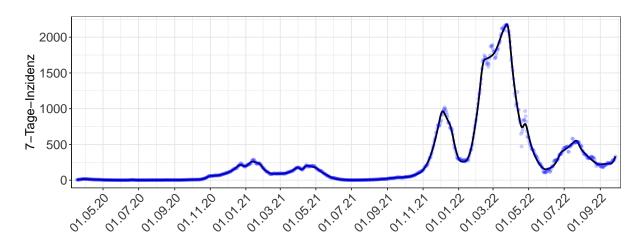



Abbildung 99: 7-Tage-Inzidenz pro 100.000 Einwohner in Sachsen-Anhalt. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 100 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Sachsen-Anhalt.

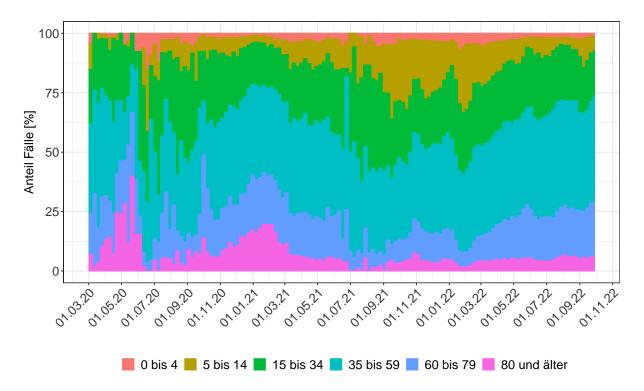



Abbildung 100: Alterverteilung der COVID-19 Fälle über die Zeit in Sachsen-Anhalt. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 101 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Sachsen-Anhalt (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

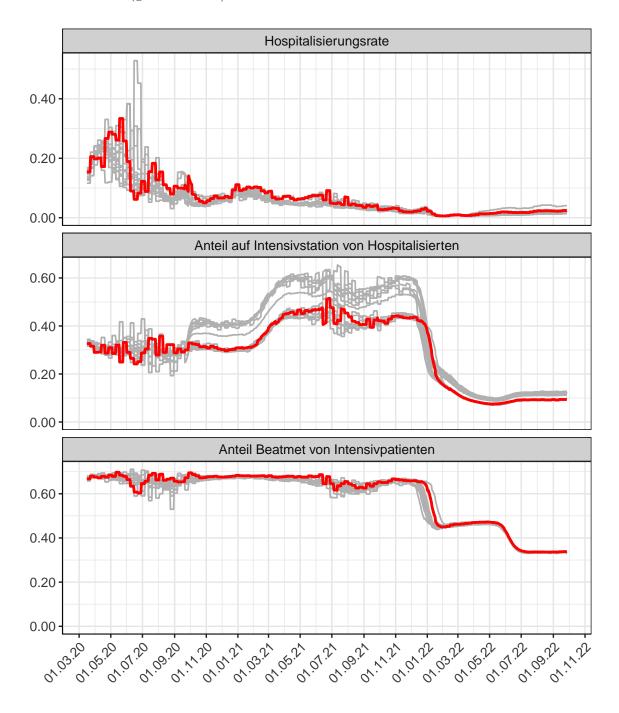



Abbildung 101: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Sachsen-Anhalt

Abb. 102 zeigt die Veränderung von Sterberaten für Sachsen-Anhalt (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

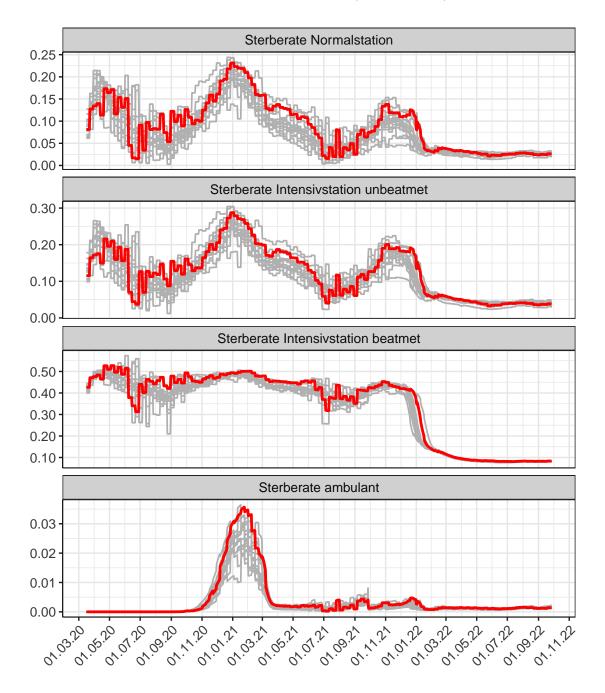



Abbildung 102: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Sachsen-Anhalt

Abb. 103 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Sachsen-Anhalt dar.

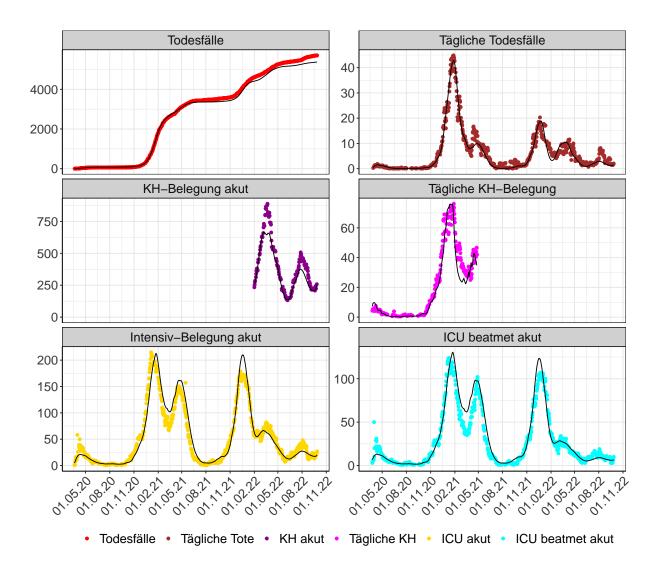



Abbildung 103: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Sachsen-Anhalt. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 16 Schleswig-Holstein

#### 16.1 Infektionsgeschehen

Abb. 104 zeigt den R(t) Schätzwert für Schleswig-Holstein (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

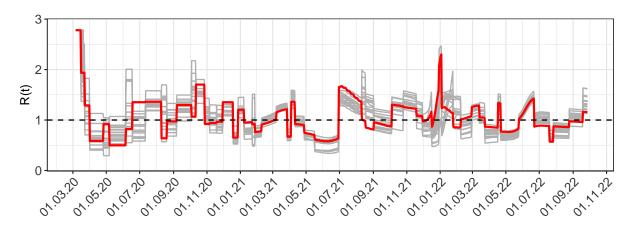



Abbildung 104: R(t) Werte über die Zeit für Schleswig-Holstein

Abb. 105 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Schleswig-Holstein basierend auf den abgeschätzten R(t)-Werten.

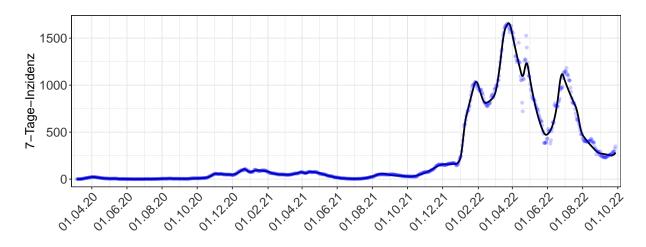



Abbildung 105: 7-Tage-Inzidenz pro 100.000 Einwohner in Schleswig-Holstein. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 106 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Schleswig-Holstein.

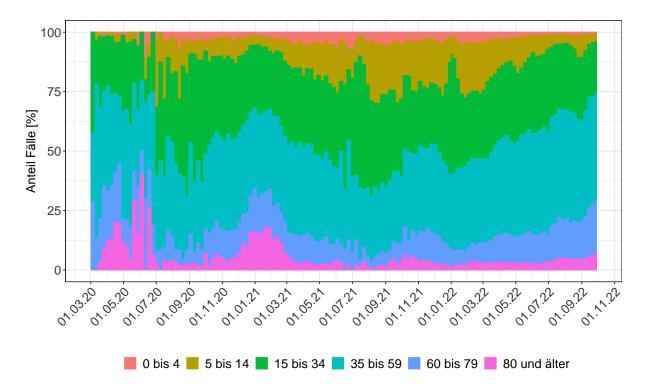



Abbildung 106: Alterverteilung der COVID-19 Fälle über die Zeit in Schleswig-Holstein. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 107 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Schleswig-Holstein (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

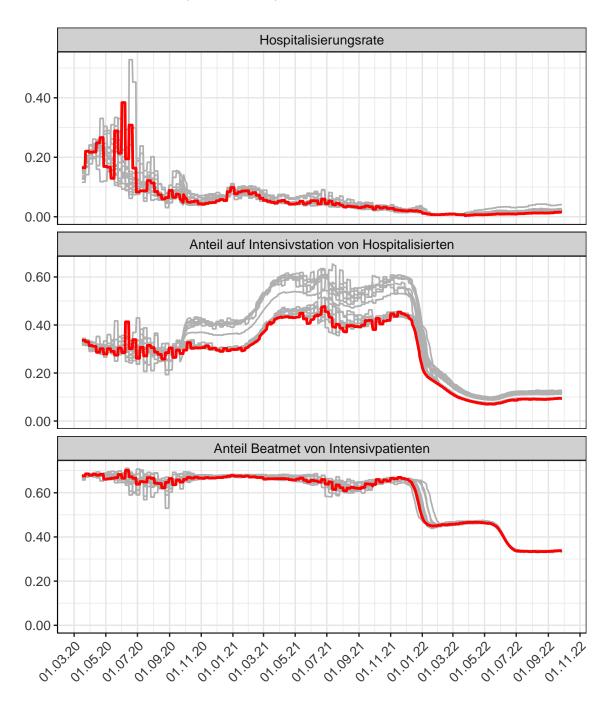



Abbildung 107: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Schleswig-Holstein

Abb. 108 zeigt die Veränderung von Sterberaten für Schleswig-Holstein (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

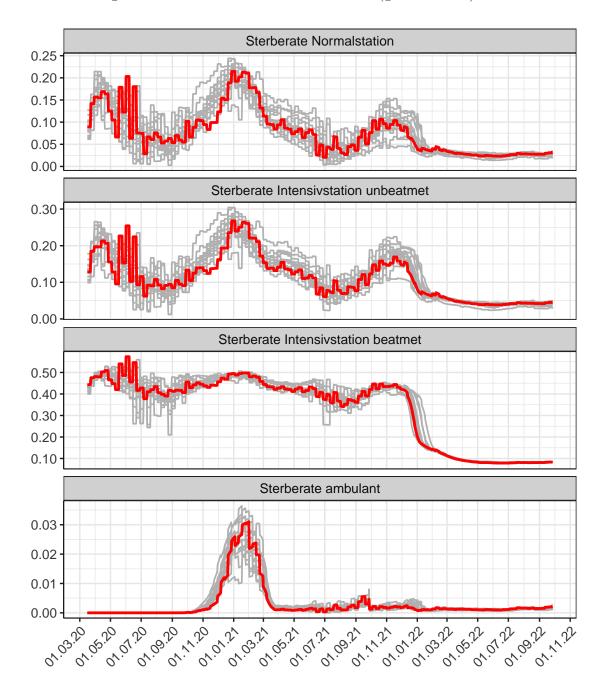



Abbildung 108: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Schleswig-Holstein

Abb. 109 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Schleswig-Holstein dar.

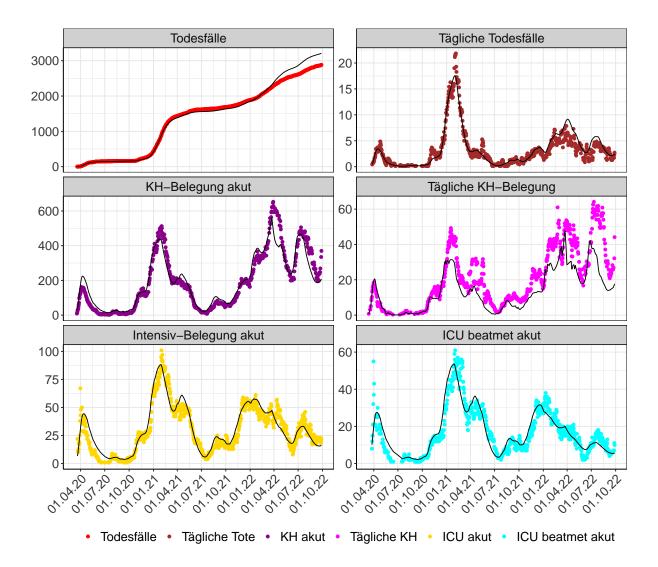



Abbildung 109: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Schleswig-Holstein. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

# 17 Thüringen

#### 17.1 Infektionsgeschehen

Abb. 110 zeigt den R(t) Schätzwert für Thüringen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

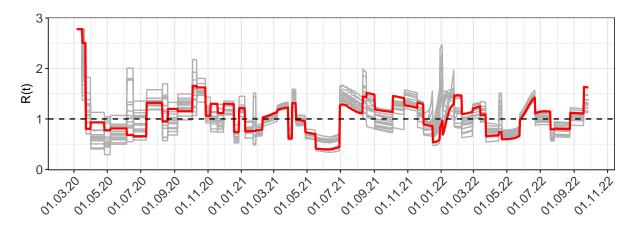



Abbildung 110: R(t) Werte über die Zeit für Thüringen

Abb. 111 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Thüringen basierend auf den abgeschätzten R(t)-Werten.

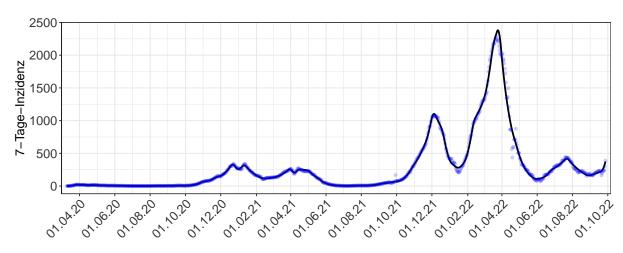



Abbildung 111: 7-Tage-Inzidenz pro 100.000 Einwohner in Thüringen. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 112 zeigt den Anteil an Neu<br/>infektionen pro Woche stratifiziert nach Altersgruppe für Thüringen.

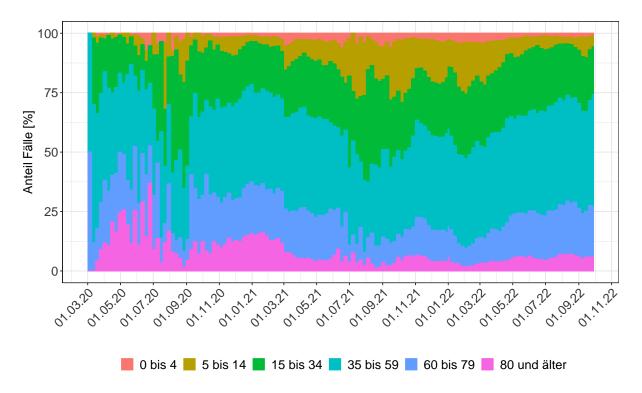



Abbildung 112: Alterverteilung der COVID-19 Fälle über die Zeit in Thüringen. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 113 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Thüringen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

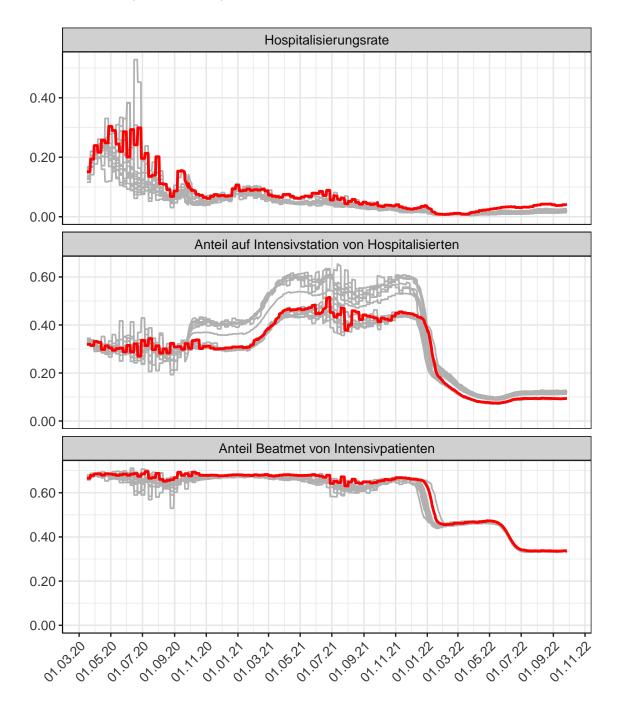



Abbildung 113: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Thüringen

Abb. 114 zeigt die Veränderung von Sterberaten für Thüringen (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

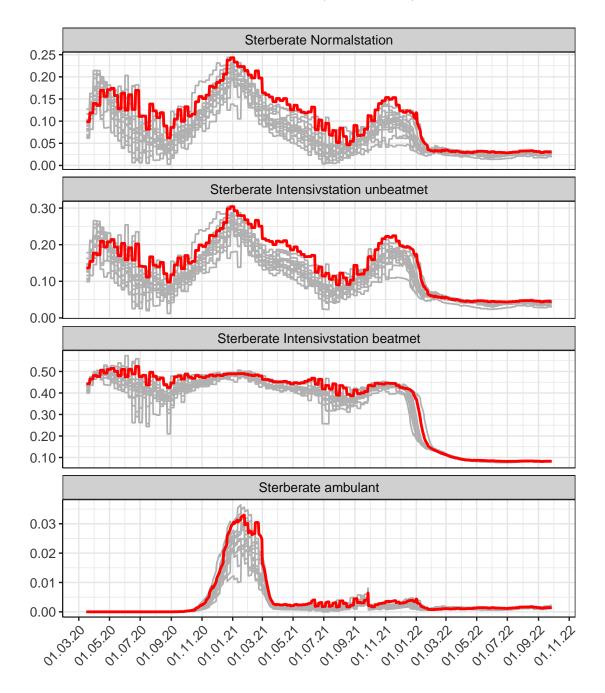



Abbildung 114: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Thüringen

Abb. 115 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Thüringen dar.

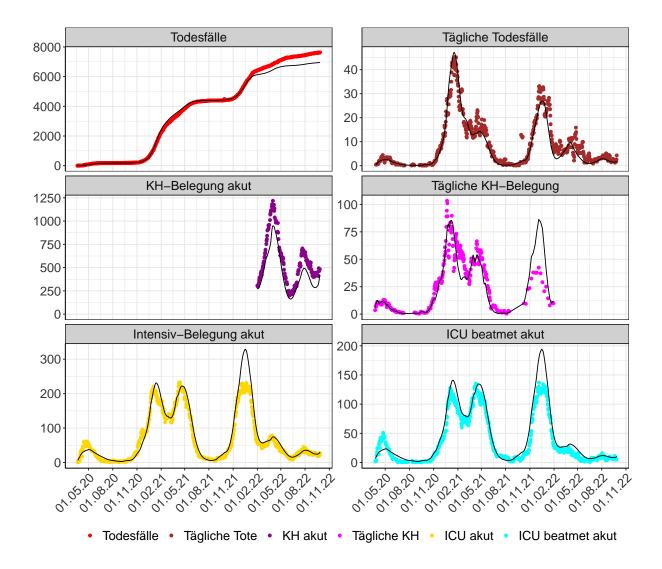



Abbildung 115: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Thüringen. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt

#### 18 Deutschland

#### 18.1 Infektionsgeschehen

Abb. 116 zeigt den R(t) Schätzwert für Deutschland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).



Abbildung 116: R(t) Werte über die Zeit für Deutschland

Abb. 117 zeigt eine Übersicht über die gemeldeten 7-Tage Inzidenzen (Punkte) und die Modellvorhersage (Linien) der 7-Tage Inzidenzen pro 100.000 Einwohner für Deutschland



Abbildung 117: 7-Tage-Inzidenz pro 100.000 Einwohner in Deutschland. Punkte: Gemeldete Inzidenz - Linien: Modellbeschreibung

Abb. 118 zeigt den Anteil an Neuinfektionen pro Woche stratifiziert nach Altersgruppe für Deutschland.

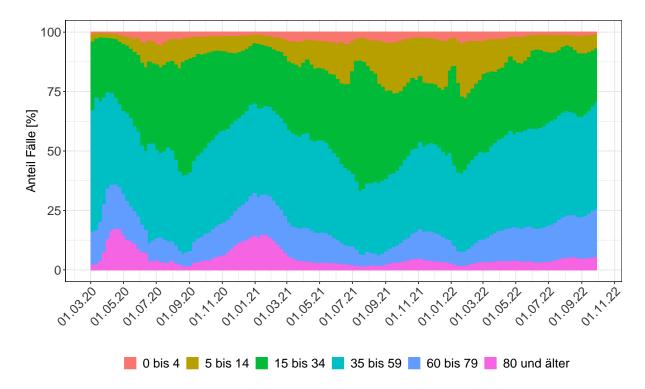



Abbildung 118: Alterverteilung der COVID-19 Fälle über die Zeit in Deutschland. Anteil der Fälle je Altersgruppe zusammengefasst je Woche

Abb. 119 zeigt die Veränderung von Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet für Deutschland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

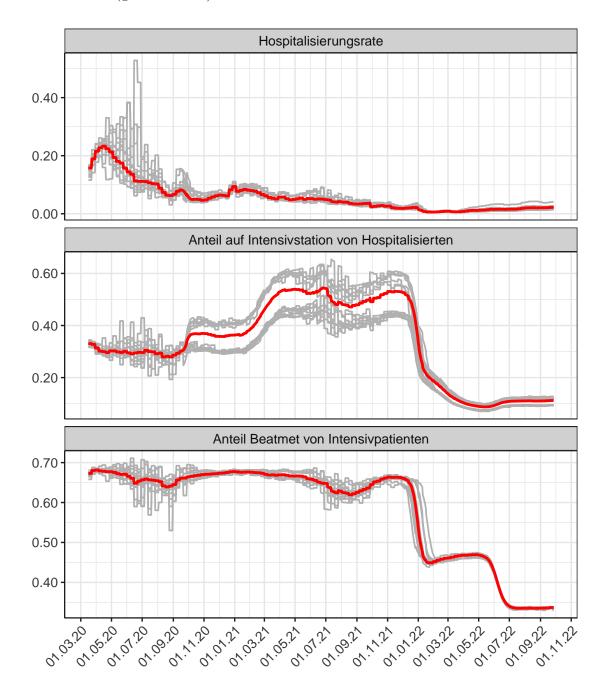



Abbildung 119: Hospitalisierungsrate, Anteil auf Intensivstation und Anteil Beatmet über die Zeit für Deutschland

Abb. 120 zeigt die Veränderung von Sterberaten für Deutschland (rote Linie) über die Zeit im Vergleich mit den anderen Bundesländern (graue Linien).

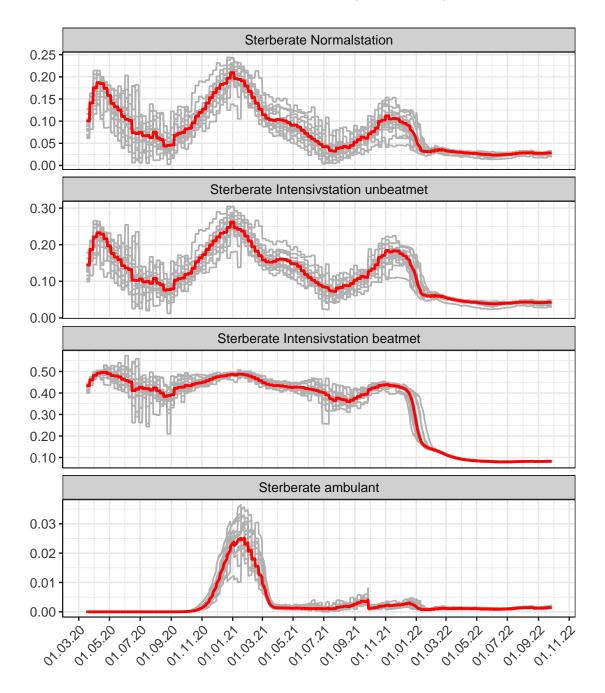



Abbildung 120: Sterberaten (Normalstation, Intensivstation unbeatmet, Intensivstation beatmet und ambulant) über die Zeit für Deutschland

Abb. 121 stellt die Ergebnisse der Modellierung (Linie) im Vergleich zu den observierten Daten (Punkte) für Deutschland dar.

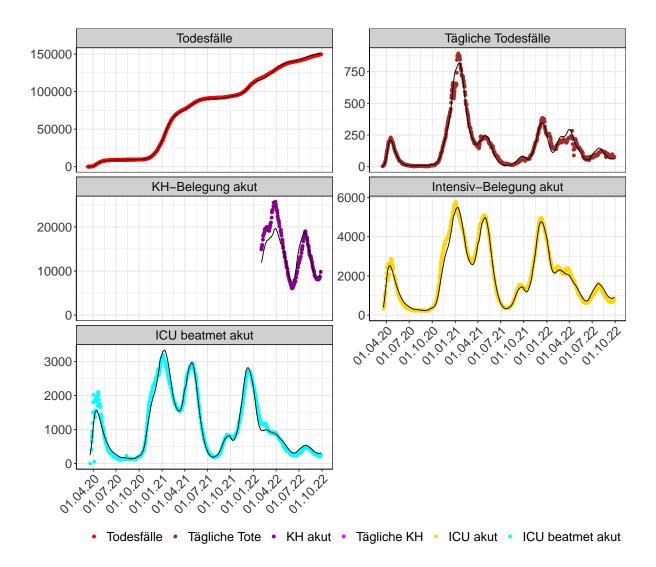



Abbildung 121: Modellbeschreibung der Belegung von KH Betten und Intensivstationen, und Todesfällen in Deutschland. Punkte: gemeldete Daten; Linie: Modellbeschreibung. Tägliche Tote und Tägliche KH sind als 7-Tage gleitender Durchschnitt dargestellt